Math, asked by ashishmistry8734, 4 months ago

area of rhombus is 120 cm sq. and one diagonal is 8 CM so, please find the other side of diagonal

Answers

Answered by Miracle901
6

☞︎︎︎ Given :

\:

  • Area = 120cm²

  • length of diagonal = 8cm

Solution :

\:

 \large  \red{\rightarrow}    \:  \boxed{\mathrm{area =  \dfrac{1}{2} \times d_1 \ \:  \times d_2}}

\:

  \large\implies \mathtt{120 =  \dfrac{1}{2}  \times 8 \times d_2}

\:

  \large\implies \mathtt{120 =  \dfrac{1}{ \cancel{2}}  \times  \cancel8 \times d_2}

\:

 \large \implies \: \mathtt{120 =4 \times d_2}

\:

  • On Transposing The Terms :

  \large\implies \mathtt{d_2 = \dfrac{120}{4}  }

\:

  \large\implies \mathtt{d_2 = \dfrac{ \cancel{120}}{ \cancel4}  }

\:

  \large\implies \mathtt{d_2 =   30cm}

\:

Another diagonal = 30cm

Answered by Agamsain
59

Answer :-

  • Second Diagonal of Rhombus = 30 cm

Given :-

  • Area of Rhombus = 120 cm²
  • First Diagonal of Rhombus = 8 cm

To Find :-

  • Second Diagonal of Rhombus = ?

Explanation :-

Let the Second Diagonal of Rhombus to be 'x' cm

As we know,

\pink \bigstar \: { \underline { \boxed { \bf \implies Area \: of \: Rhombus = \dfrac{1}{2} \times D_1 \times D_2 }}} \: \bigstar

Now Substituting the values,

\rm : \: \longrightarrow \dfrac{1}{2} \times D_1 \times D_2 = Area \: of \: Rhombus

\rm : \: \longrightarrow \dfrac{1}{2} \times 8 \times x = 120 \: cm^2

\rm : \: \longrightarrow x = \dfrac{120 \times 2}{8} \: cm^2

\rm : \: \longrightarrow x = \dfrac{240}{8} \: cm^2

\red { \underline { \boxed { \bf : \: \longrightarrow x = 30 \: cm }}}

Hence, the Second Diagonal of the Rhombus is 30 cm.

@Agamsain

Similar questions