Math, asked by lakshmimaurya220, 5 months ago

Area of rhombus of side 10 cm is 96cm^2. find the length of diagonal​

Answers

Answered by Bangtanboys0613
2

Let length of two diagonals be d1 & d2

Area of rhombus = (1/2)*d1*d2

=> (1/2)*d1*d2 = 96

=> d1*d2 = 192 ————————— (1)

=> 2d1*d2 = 384 ————————— (2)

Let length of side = l

Therefore, l^2 = (d1/2)^2 + (d2/2)^2

=> 10^2 = d1^2/4 + d2^2/4

=> 100 = (d1^2 + d2^2)/4

=> d1^2 + d2^2 = 400 ——————— (3)

Adding (2) & (3)

d1^2 + d2^2 + 2d1*d2 = 400 + 384

=> (d1 + d2)^2 = 784

=> d1 + d2 = sqrt(784)

=> d1 + d2 = 28 => d2 = 28 - d1 ————- (4)

Put d2 = 28 - d1 in (1)

d1*(28 - d1) = 192

=> 28d1 - d1^2 = 192

=> d1^2 - 28d1 + 192 = 0

=> d1^2 - 16d1 - 12d1 + 192 = 0

=> d1(d1 - 16) - 12(d1 - 16) = 0

=> (d1 - 16)(d1 - 12) = 0

=> d1 = 16 or d1 = 12

When d1 = 16, d2 = 28 - 16 = 12

When d2 = 12, d2 = 28 - 12 = 16

Therefore length of two diagonals are 12 cm & 16 cm

I hope it's help you:))

Answered by avrajeetkarmakar90
0

Step-by-step explanation:

side is 10cm

we know 10cm2+10cm2=diagonal2

200cm2=diagonal2

diagonal is root of 200=14.14 which is the length of the diagonal

Similar questions