Math, asked by 1452696, 4 hours ago

Area of the base of a cylender as 616 cm², and its neight is 25cm. Find its CSA, TSA and volume. ​

Answers

Answered by xSoyaibImtiazAhmedx
1

Given ,

•Area of the base of the cylinder = 616 cm².

• Height of the cylinder (h) = 25 cm.

Let radius be → r

We know that ,

 \underline \bold{Base  \: area \:  of  \: cylinder = πr²}

 \implies \: 616 = \pi {r}^{2}

 \bold{ \implies \: 616 =  \frac{22}{7}  \times  {r}^{2} }

 \bold{ \implies \:  {r}^{2} =  \frac{616}{22}  \times 7 }

 \bold{ \implies \:  {r}^{2} =  196 }

\bold{ \implies \:  {r}^{2} =   {14}^{2}  }

\bold{ \implies \:   \boxed{ \bold{{r}^{} =   {14} \:  \: cm.  }}}

Now,

 \underline \bold{★ \: CSA  \: o f  \: the \:  cylinder = 2πrh}

 \implies \bold{CSA  \: of \:  the  \: cylinder = 2 \times  \frac{22}{7}  \times 14 \times 25}

 \implies  \boxed{\bold{CSA  \: of \:  the  \: cylinder = 2200 \:  \:  {cm}^{2} }}

 \underline \bold{★ \: TSA  \: of  \: the  \: cylinder = 2πr(r+h)</p><p>}

 \implies \bold{TSA  \: of  \: the  \: cylinder = 2  \times \frac{22}{7}  \times 14(14 + 25)</p><p>}

\implies \bold{TSA  \: of  \: the  \: cylinder = 2  \times \frac{22}{7}  \times 14 \times</p><p>}

\implies  \boxed{\bold{TSA  \: of  \: the  \: cylinder =3432 \:  \:  {cm}^{2} }}

 \underline \bold{★ Volume  \: of \:  the \:  cylinder = πr²h}

 \implies \:  \bold{Volume  \: of \:  the \:  cylinder =  \frac{22}{7}  \times  {14}^{2} \times 25 }

\implies \:  \bold{Volume  \: of \:  the \:  cylinder =  \frac{22}{7}  \times  14 \times 14\times 25 }

\implies \:   \boxed{\bold{Volume  \: of \:  the \:  cylinder =  15400  \:  \:  {cm}^{3} }}

Similar questions