Math, asked by prafulvjadhaobalu382, 1 month ago

Area of the circle x2+y2=16 is

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Method : - 1

Given curve is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} = 16

It represents the equation of circle whose center is ( 0, 0 ) and radius 4 units.

So, required area using integration is given by

\rm :\longmapsto\:Area =4 \displaystyle\int_0^4\rm y \: dx

 \rm \:  =  \:4\displaystyle\int_0^4\rm  \sqrt{ {4}^{2}  -  {x}^{2} }  \: dx

We know,

 \boxed{ \bf{ \: \displaystyle\int\rm  \sqrt{ {a}^{2}  -  {x}^{2} } \: dx =  \frac{x}{2} \sqrt{ {a}^{2}  -  {x}^{2} } +  \frac{ {a}^{2} }{2} {sin}^{ - 1} \frac{x}{a}}}

So, using this result, we get

\rm \:  =  \:4\bigg( \dfrac{x}{2} \sqrt{ {4}^{2}  -  {x}^{2} } +  \dfrac{ {4}^{2} }{2} {sin}^{ - 1} \frac{x}{4}\bigg)_0^4

\rm \:  =  \:4\bigg( \dfrac{4}{2} \sqrt{ {4}^{2}  -  {4}^{2} } +  \dfrac{ {4}^{2} }{2} {sin}^{ - 1} \dfrac{4}{4} - 0 -0 \bigg)

\rm \:  =  \:4\bigg(0+  8 {sin}^{ - 1} (1) \bigg)

\rm \:  =  \:4 \times 8 \times  \dfrac{\pi}{2}

\rm \:  =  \:16\pi \: square \: units

Alter Method :-

Given curve is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} = 16

We know,

Equation of circle having center ( h, k ) and radius r is given by

\rm :\longmapsto\:  \boxed{ \bf{ \: {(x - h)}^{2} +  {(y - k)}^{2} =  {r}^{2} }}

So, on comparing with this equation, we get r = 4 units.

Now,

\rm :\longmapsto\:Area_{(circle)} = \pi {r}^{2}

\rm :\longmapsto\:Area_{(circle)} = \pi {(4)}^{2}

\bf :\longmapsto\:Area_{(circle)} = 16 \: \pi  \: square \: units

Attachments:
Similar questions