area of the path of around a square field is 425 m square . find the width of the path if the side of the square is 40m . it's answer is 6162.25 m square
Answers
Answered by
0
Step-by-step explanation:
→ Area of path = Area of region
Area of path = Area of region(1),(2),(3),(4)
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w 2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w 2 −8w+125=0
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w 2 −8w+125=0D=8
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w 2 −8w+125=0D=8 2
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w 2 −8w+125=0D=8 2 −4(20)(125)<0
Area of path = Area of region(1),(2),(3),(4)⇒25=(0.4+2w)w×2+(0.4)w×2⇒25=0.8w−4w 2 +0.8w⇒4w 2 −1.6w+25=0⇒40w 2 −16w+250=0⇒20w 2 −8w+125=0D=8 2 −4(20)(125)<0⇒ No solution
Attachments:
Answered by
1
Answer:
Area of path = 4x^2+4(40x)
Where x is the width of the path
4x^2 +160x=425
4x^2+160x-425=0
4x^2+170x-10x-425=0
4x(x+42.5)-10(x+42.5)=0
4x=10 and x =-42.5
X=2.5 path cant be negative
So path width 2.5 m
Similar questions