Math, asked by nallajayavardhanrao, 2 months ago

Area of the region bounded by y^2=4xandy=2x-4​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\: {y}^{2} = 4x -  -  - (1)

and

\rm :\longmapsto\:y = 2x - 4 -  -  - (2)

Point of intersection of curve (1) and (2)

\rm :\longmapsto\: {y}^{2} = 4x

\rm :\longmapsto\: {y}^{2} = 2 \times 2x

\rm :\longmapsto\: {y}^{2} = 2 \times (y + 4)

\rm :\longmapsto\: {y}^{2} = 2y +8

\rm :\longmapsto\: {y}^{2}  - 2y  - 8 = 0

\rm :\longmapsto\: {y}^{2}  - 4y + 2y  - 8 = 0

\rm :\longmapsto\:y(y - 4) + 2(y - 4) = 0

\rm :\longmapsto\:(y  - 4)(y + 2) = 0

\rm :\longmapsto\:y = 4 \:  \:  \: or \:  \:  \: y =  -  \: 2

Hᴇɴᴄᴇ,

➢ Points of intersection of the given curve are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 4 & \sf 4 \\ \\ \sf 1 & \sf  - 2 \end{array}} \\ \end{gathered}

Curve sketching,

See the attachment

Required Area with respect to y - axis

\rm  \:  =  \: \:\displaystyle\int_{ - 2}^4\sf  \: (x_{line} - x_{parabola}) \: dy

\rm  \:  =  \: \:\displaystyle\int_{ - 2}^4\sf  \: ( \dfrac{y + 4}{2}  - \dfrac{ {y}^{2} }{4} )\: dy

\rm  \:  =  \:  \dfrac{1}{2} \:\displaystyle\int_{ - 2}^4\sf  \: ( y + 4- \dfrac{ {y}^{2} }{2} )\: dy

\rm  \:  =  \: \:\dfrac{1}{2}\bigg(\dfrac{ {y}^{2} }{2} + 4y - \dfrac{ {y}^{3} }{6}  \bigg)_{ - 2}^4

\rm  \:  =  \: \:\dfrac{1}{2}\bigg(8 + 16 - \dfrac{32}{3}  - 2 + 8  -  \dfrac{4}{3} \bigg)

\rm  \:  =  \: \:\dfrac{1}{2}\bigg(30 - 12 \bigg)

\rm  \:  =  \: \:\dfrac{1}{2}\bigg(18 \bigg)

\rm  \:  =  \: \:9 \: square \: units

Formula Used :-

\green{ \boxed{ \bf \: \displaystyle\int\sf \:  {x}^{n} \: dx =  \frac{ {x}^{n + 1} }{n + 1}  + c}}

\green{ \boxed{ \bf \: \displaystyle\int\sf \: k \: dx \:  =  \: kx \:  +  \: c}}

Attachments:
Similar questions