Math, asked by Deshant7, 5 months ago

area of the sectors of 1540 square metre each subtends an angle of 50 degree at the centre of the circle find the radius.

Answers

Answered by aryan073
5

Given :

•Area of the sector =1540m²

• angle =50degree

To Find :

• The radius =?

Formula :

 \red \bigstar \boxed{  \tt{area \: of \: sector \:  =  \frac{ \theta}{360}   \times \pi {r}^{2} }}

Solution :

According to the given conditions :

  \\ \implies \sf \: area \: of \: sector\:  =  \frac{ \theta}{360}  \times \pi {r}^{2}  \\  \\  \implies \sf \: area \: of \: sector \:  = 1540 \\  \\  \implies \sf \:  \frac{ \theta}{360}   \times \pi  {r}^{2}  = 1540 \\  \\  \implies \sf \:  \frac{50}{360}  \times  \frac{22}{7}  {r}^{2}  = 1540 \\  \\  \implies \sf \:  {r}^{2}  =  \frac{1540 \times 3 \times 7}{5 \times 22}  \\  \\  \implies \sf \:  {r}^{2}  = 14 \times 36 \times 7 \\  \\  \implies \sf \:  {r}^{2}  = 14 \times 36 \times 7 \\  \\  \implies \sf \: r =  \sqrt{14 \times 36 \times 7}  \\  \\  \implies \sf \: r =  \sqrt{2 \times 7 \times  6 \times 6 \times 7}  \\  \\  \implies \sf \: r = 7 \times 6 \sqrt{2}  \\  \\  \implies \sf \: r = 42 \sqrt{2}  \\  \\  \implies \boxed{ \sf{r = 42 \sqrt{2} }} \\  \\  \\  \red \bigstar  \sf \: thus \: the \: radius \: of \: the \: circle = 42 \sqrt{2}

Similar questions
English, 11 months ago