Math, asked by manjunath32, 11 months ago

Area of the triangle whose two sides = 2i - 3j + k, = i - j + 2k is

(a) (b) 1/2

(c) 2 (d) None of these

Answers

Answered by MaheswariS
1

Answer:

Area of triangle is\frac{\sqrt{35}}{2}square units

Step-by-step explanation:

Given:

\vec{a}= 2\vec{i}-3\vec{j}+\vec{k}

\vec{b}=\vec{i} - \vec{j }+2\vec{k}

\vec{a}*\vec{b}=\left|\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\2&-3&1\\1&-1&2\end{array}\right|

\implies\:\vec{a}*\vec{b}=(-6+1)\vec{i}-(4-1)\vec{j}+(-2+3)\vec{k}

\implies\:\vec{a}*\vec{b}=-5\vec{i}-3\vec{j}+\vec{k}

\implies\:|\vec{a}*\vec{b}|=\sqrt{(-5)^2+(-3)^2+1^2}

\implies\:|\vec{a}*\vec{b}|=\sqrt{25+9+1}

\implies\:|\vec{a}*\vec{b}|=\sqrt{35}

Now,

Area of triangle

=\frac{1}{2}|a*b|

=\frac{1}{2}\sqrt{35}square units

Similar questions