Math, asked by yashsingal1981, 1 month ago

area of trapezium =405m^2 parrel sides ratio =4:5.. distance between =18 find length of parrallel sides
GIVE STEP BY STEP EXPLAINATION ​

Answers

Answered by ImperialGladiator
34

Answer:

Length of parllel sides are 20. and 25m

Explanation:

Area of a trapezium :-

→ ½(a + b)h

Where,

  • a and b denotes the parallel sides.
  • h is the distance between parallel sides.

We are given with,

  • Area = 405m²
  • Ratio of a : b = 4 : 5
  • h = 18m

Let's say the parallel sides are 4x and 5x

According to the question,

→ 405 = ½(4x + 5x)18

→ 405 = ½(9x)18

→ 405 = (9x)9

→ 405 = 81x

→ 405/81 = x

→ 5 = x

x = 5

So, the parallel sides are :-

  • 4x = 4(5) = 20m
  • 5x = 5(5) = 25m

Hence, the parallel sides are 20m & 25m.

_____________________

Formula used :

Area of a trapezium :-

→ ½(sum of parallel side)(distance between them)

Answered by ⱮøøɳƇⲅυѕɦεⲅ
12

\Huge \orange  \dag \:  \Huge  \underbrace{\textrm{{{\color{blue}{Given}}}}}  \: \orange  \dag

Area of trapezium = 405 m².

Ratio of parallel sides are 4 : 5.

Distance between parallel sides = 18 m.

Or,

Height = 18 m.

_________________________

\Huge \orange  \dag \:  \Huge  \underbrace{\textrm{{{\color{blue}{To  \:  \: Find}}}}}  \: \orange  \dag

Length of parallel sides.

________________________

\Huge \orange  \dag \:  \Huge  \underbrace{\textrm{{{\color{blue}{Formula \:  \:  Using}}}}}  \: \orange  \dag

 \large\begin{gathered} {\underline{\boxed{ \rm {\red{Area  \:  \: of \:  \:  trapezium \:   =  \:  \frac{1}{2} \:  \times  \: h \:  \times  \: (a + b) }}}}}\end{gathered}

  • H denotes height of trapezium.

  • a and b denotes parallel sides of trapezium.

_______________________

\Huge \orange  \dag \:  \Huge  \underbrace{\textrm{{{\color{blue}{Solution}}}}}  \: \orange  \dag

Let , the parallel sides of trapezium be 4x and 5x respectively.

According to the question

 \large\begin{gathered} {\underline{\boxed{ \rm {{405  \:   =  \:  \frac{1}{2} \:  \times  \: 18 \:  \times  \: ( \: 4x \:  + \:  5x \: )  \:  }}}}}\end{gathered}

 \large\begin{gathered} {\underline{\boxed{ \rm {{405  \:   =  \:   \cancel\frac{1} {2} \:  \times  \:  \cancel{18} \:  \:  ^{9}  \:  \times  \: ( \: 9x )  \:  }}}}}\end{gathered}

\large\begin{gathered} {\underline{\boxed{ \rm {{405  \:   =  \: 9 \:  \times  \: 9x \:   }}}}}\end{gathered}

 \large\begin{gathered} {\underline{\boxed{ \rm {{405  \:   =   \: 81x   }}}}}\end{gathered}

 \large\begin{gathered} {\underline{\boxed{ \rm {{ \frac{405}{81}   \:   =   \:x   }}}}}\end{gathered}

 \large\begin{gathered} {\underline{\boxed{ \rm {{  \cancel\frac{405} {81}  \: ^{5}   \:   =   \:x   }}}}}\end{gathered}

 \large\begin{gathered} {\underline{\boxed{ \rm {{ 5 \:  =   \: x  }}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \rm {\red{x \:  =  \: 5}}}}}\end{gathered}

So , the parallel sides of trapezium is :-

\bf \large \rightarrow \: 4x \:  =  \: 4 \:  \times  \: 5 \:  =  \: 20 \: m

\bf \large \rightarrow \: 5x \:  =  \: 5 \:  \times  \: 5 \:  =  \: 25 \: m

_______________________

Hence , the parallel sides of trapezium is 20 m and 25 m.

Similar questions