Math, asked by ashandharman, 19 days ago

Area of Triangle 25cm, 25cm, 34cm (Using Heron's Formula Only)

Answers

Answered by Itzheartcracer
4

Given :-

Side of triangle = 25 cm, 25 cm and 34 cm

To Find :-

Area

Solution :-

We know that

S = a +  b + c/2

S = 25 + 25 + 34/2

S = 84/2

S = 42 cm

Now

Area = √s(s - a)(s - b)(s - c)

Area = √42(42 - 25)(42 - 25)(42 - 34)

Area = √42(17)(17)(8)

Area = 17√42(8)

Area = 17√336

Area = 17 × 4√21

Area = 68√21 cm²

Answered by jaswasri2006
1

\underline{ \pink{ \rm GIVEN \:  \: DATA\: \: : }}

Sides of Triangle :-

25cm , 25cm , 34cm

\underline{ \purple{ \rm TO \: \: FIND \: \: : }}

Area of Triangle

\underline{ \red{ \rm SOLUTION \: \: : }}

First, Finding semi perimeter(s)

 \green{ \boxed{ \boxed{ \color{darkblue}  \rm s =  \frac{a  \: + \: b \:  + \: c}{2} }}}

substituting values,

 \rm s =  \frac{25 + 25 + 34}{2}

 \rm s =  \frac{84}{2}

 \boxed{ \color{gold} \rm s = 42}

and, we know that

the formula to find Area of Triangle,

 \boxed{ \boxed{ \color{brown}{ \rm Area =  \sqrt{s(s - a)(s - b)(s - c )}}}}

by substituting values,

\rm Area =  \sqrt{42(42 - 25)(42 - 25)(43 - 34)}

\rm Area =  \sqrt{42(17)(17)(9)}

\rm Area =  \sqrt{109242}

 \boxed{ \boxed{ \color{springgreen}\rm Area = 330.5 \:  {cm}^{2} }}

 \underline{ \underline{ \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: }}

 \therefore \rm \rm Area \:  \: of \:  \:  \triangle = \orange{ 330.5 \:  {cm}^{2} }

Similar questions