Math, asked by Rinkudubey2468, 1 year ago

Areas of two similar triangles are 338 sq cm and 200 sq cm.
Find the ratio of the corresponding sides.​

Answers

Answered by Anonymous
12

 \large  \underline{ \underline{ \sf \: Solution :</p><p> \:  \:  \: }}

Given ,

 \starArea of 1st triangle (T1) = 338 cm²

 \starArea of 2nd triangle (T2) =200 cm²

It is known that ,

The ratios of the areas of two similar triangles is equal to the square of their corresponding sides

So ,

   \fbox{ \fbox{\sf \: \frac{  \: area  \: of \: T_{1}  \: }{ \: area  \: of \: T_{2}  \: }  =    { \:  \: ( \frac{ \:  \:  \:   side \: of \:T_{1} \:  \:  \:   }{ \:  \: side \: of \:T_{2}} )}^{2} }}

 \implies \sf \frac{338}{200}  =   { \:  \:  ( \frac{ \:  \:  \:  \: side \: of \:T_{1} \:  \:  \:  \:  }{ \:  \: side \: of \:T_{2}} )}^{2}  \\  \\    \sf \: Taking  \: square  \: root  \: on \:  both  \: side \: \\  \\ \implies \sf \sqrt{\frac{338}{200} }   =   \sqrt{{ \:  \:  ( \frac{ \:  \:  \:  \: side \: of \:T_{1} \:  \:  \:  \:  }{ \:  \: side \: of \:T_{2}} )}^{2}  }   \\   \\\implies  \sf \frac{ \sqrt{338} }{ \sqrt{200} } =  \frac{ \:  \:  \:  \: side \: of \:T_{1} \:  \:  \:  \:  }{\:  \: side \: of \:T_{2}}  \\  \\\implies \sf \frac{ \:  \:  \:  \: side \: of \:T_{1} \:  \:  \:  \:  }{\:  \: side \: of \:T_{2}}  =  \frac{18.38 }{14.14}

 \thereforeThe ratio of the corresponding sides. are 18.38 : 14.14 or 14.14 : 18.38

Answered by Tamilneyan
10

Answer:

ratio of the side of triangle = 13:10

Step-by-step explanation:

Attachments:
Similar questions