Math, asked by tirthpanchal3105, 9 months ago

arg(5-√3i). help for the answer

Answers

Answered by poonamsingh1050
0

Step-by-step explanation:

0) If

z cos isin

6 6

 

 

then

A)

|z| 1, arg z

6

 

B)

3 5 |z| , arg z

2 24

 

C) | z | 1, arg z

4

 

D)

3 1 1 |z| , arg z tan

Answered by sadiaanam
0

Answer: Argument of (5-\sqrt{3}i )  is  -2\pi  +cos^{-1} \frac{5}{2\sqrt{7} }

Step-by-step explanation:

 arg (z) = (5-\sqrt{3}i )

complex number z is of the form x+iy,

by comparing the value of z we can say that ,

the value of x = 5 ,

the value of y = -\sqrt{3},

so,

the modulus of z  is

=>  |z| = \sqrt{x^{2} +y^{2} }

=>    |z| = \sqrt{5^{2}+(-\sqrt{3} ^{2})  }

=>    |z| = \sqrt{25+3}

=>    |z| = \sqrt{28}

=>    |z| = 2\sqrt{7}

so , r =  2\sqrt{7}

now,

       z = r ( cosθ + isinθ)

       (5-\sqrt{3}i )  =  r ( cosθ + isinθ)

   

now, comparing the real parts of the equation,

=> 5 = r cosθ

=> 5 = 2\sqrt{7} cosθ

=> cosθ = \frac{5}{2\sqrt{7}  }

now , comparing the imaginary parts of the equation,

=> -\sqrt{3}i = r isinθ

=> -\sqrt{3}  = r sinθ

=> -\sqrt{3}  = 2\sqrt{7} sinθ

=> sinθ  = \frac{-\sqrt{3}}{2\sqrt{7} }

sinθ is negative and cosθ is positive ,

it is possible only in IV quadrant .

so,

Argument = -(360^{0} - cos^{-1} \frac{5}{2\sqrt{7} } )

                   =>  -360^{0} + cos^{-1} \frac{5}{2\sqrt{7} }

                    => -2\pi  +cos^{-1} \frac{5}{2\sqrt{7} }

so, the argument of (5-\sqrt{3}i )  is equal to -2\pi  +cos^{-1} \frac{5}{2\sqrt{7} }

for more such questions :

https://brainly.in/question/18792633

#SPJ2

Similar questions