Arithmetic geometric progression solved examples
Answers
Answered by
1
Find the sum of series 1. 2 + 2. 22 + 3. 23 +…+ 100. 2100.
Solution: Let us denote the given series by S.
Let S = 1.2 + 2.22 + 3.23 +…+ 100.2100 …… (1)
⇒ 2S = 1.22 + 2.23 +…+ 99.2100 + 100.2101 …… (2)
⇒ –S = 1.2 + 1.22 + 1.23 +…+ 1.2100 – 100.2101
⇒ –S = 1.2 (299–1/(2–1)) – 100.2101
⇒ S = –2100 + 2 + 100.2101 = 199.2100 + 2.
Solution: Let us denote the given series by S.
Let S = 1.2 + 2.22 + 3.23 +…+ 100.2100 …… (1)
⇒ 2S = 1.22 + 2.23 +…+ 99.2100 + 100.2101 …… (2)
⇒ –S = 1.2 + 1.22 + 1.23 +…+ 1.2100 – 100.2101
⇒ –S = 1.2 (299–1/(2–1)) – 100.2101
⇒ S = –2100 + 2 + 100.2101 = 199.2100 + 2.
Similar questions
English,
8 months ago
India Languages,
8 months ago
Environmental Sciences,
8 months ago
Science,
1 year ago
Math,
1 year ago
Science,
1 year ago