Arithmetic progression chapter conclusion
Answers
Answer:
To many people, school mathematics is virtually a phenomenon of nature. It seems timeless, set in stone—ard to change and perhaps not needing to change. But the school mathematics education of yesterday, which had a practical basis, is no longer viable. Rote learning of arithmetic procedures no longer has the clear value it once had. The widespread availability of technological tools for computation means that people are less dependent on their own powers of computation. At the same time, people are much more exposed to numbers and quantitative ideas and so need to deal with mathematics on a higher level than they did just 20 years ago. Too few U.S. students, however, leave elementary and middle school with adequate mathematical knowledge, skill, and confidence for anyone to be satisfied that all is well in school mathematics. Moreover, certain segments of the U.S. population are not well represented among those who succeed in learning mathematics. Widespread failure to learn mathematics limits individual possibilities and hampers national growth. Our experiences, discussions, and review of the literature have convinced us that school mathematics demands substantial change. We recognize that such change needs to be undertaken carefully and deliberately, so that every child has both the opportunity and support necessary to become proficient in mathematics.
Our experiences, discussions, and review of the literature have convinced us that school mathematics demands substantial change.
In this chapter, we present conclusions and recommendations to help move the nation toward the change needed in school mathematics. In the preceding chapters, we have offered citations of research studies and of theoretical analyses, but we recognize that clear, unambiguous evidence is not available to address many of the important issues we have raised.