Math, asked by graj30202, 1 year ago

arithmetic progression
if in an ap the 10th term of 10 times is equal to 15th term of 15 time, then the find of 25th term?

Answers

Answered by oshoraa
10

10 t 10 = 15 t 15

tn = a+(n-1)d

10(a+(10-1)d) = 15(a+(15-1)d)

10 a +90 d  = 15 a + 210 d

d(90 - 210) = a(15 - 10)

-120 d  = 5 a

-120     =   a

   5           d

a / d   = -24 / 1

so, a=-24 & d = 1

then t 25   = a + (n-1) d

                = -24 +(25-1) 1

                = -24 + 24

                = 0

Answered by iHelper
17
Hello!

\star \: \sf 10th\: term\: of \:A.P. = \sf a+9d \\ \star \: \sf 15th\: term \:of\: A.P. = \sf a+14d

ATQ,

\sf 10(a+9d) = \sf 15(a+14d) \\ \\ \implies \sf 10a+90d = \sf 15a+210d \\ \\ \implies \sf 90d-210d = \sf 15a-10a \\ \\ \implies \sf 5a = \sf -120d \\ \\ \implies \sf a = - \dfrac{120}{5} \sf d \\ \\ \implies \sf a = \sf -24d

\underline{\bf{25th\:term}} :
 
\sf a_{25} = \sf a+24d \\ \\ \implies \sf -24d + 24d \implies \boxed{\red{\bf{0}}}

Hence,
The 25th term of the A.P. is \bf{0}

Cheers!

graj30202: thank you! sir
iHelper: You're welcome!
Similar questions