Arrange in ascending order——> ⁴√3,√2,³√4
Answers
Step-by-step explanation:
Here we can express the given expressions as:
3
2
=2
1/3
3
=3
1/2
6
5
=5
1/6
Let us make the roots common so,
2
1/3
=2(2×1/2×1/3)=4
1/6
3
1/2
=3(3×1/3×1/2)=27
1/6
5
1/6
=5
1/6
Now, let us arrange in ascending order,
4
1/6
<5
1/6
<27
1/6
So,
2
1/3
<5
1/6
<3
1/2
So,
3
2
<
6
5
<
3
Given:43,32,34
(i)\sqrt[4]{3}=3^{\frac{1}{4}}(i)43=341
(ii)\sqrt[3]{2}=2^{\frac{1}{3}}(ii)32=231
(iii)\sqrt[3]{4}=4^{\frac{1}{3}}(iii)34=431
LCM of 4,3,3 = 12.
So, LCM of denominator of exponents is 12.
(i)\sqrt[4]{3}=3^{\frac{1}{4}} = 3^{\frac{1}{4} * \frac{3}{3}} = 3^{\frac{3}{12}} = \sqrt[12]{3^3} = \sqrt[12]{27}(i)43=341=341∗33=3123=1233=1227
(ii)\sqrt[3]{2} = 2^{\frac{1}{3}} = 2^{\frac{1}{3} * \frac{4}{4}} = 2^{\frac{4}{12}} = \sqrt[12]{2^4} = \sqrt[12]{16}(ii)32=231=231∗44=2124=1224=1216
(iii)\sqrt[3]{4} = 4^{\frac{1}{3}} = 4^{\frac{1}{3} * \frac{4}{4}} = 4^{\frac{4}{12}} = \sqrt[12]{4^4} = \sqrt[12]{256}(iii)34=431=431∗44=4124=1244=12256
Ascending order of the numbers is:
\boxed{\therefore\sqrt[3]{2}, \sqrt[4]{3}, \sqrt[3]{4}}∴32,43,34