Math, asked by ehsasrajput, 3 months ago

arrange in descending order 3/8,4/7,11/16,5/9​

Answers

Answered by Anonymous
581

ɢɪᴠᴇɴ:

  • arrange in descending order 3/8, 4/7, 11/16, 5/9

ꜱᴛᴇᴩꜱ ᴛᴏ ꜱᴏʟᴠᴇ:

  1. Take LCM of the denominators of each fraction.
  2. After taking out LCM, Multiply the denominators by such a number that the denominators become same.
  3. Now, Compare them and put them in Descending order.

______________________________________

⠀⠀⠀⠀ꜱᴛᴇᴩ ʙy ꜱᴛᴇᴩ ꜱᴏʟᴜᴛɪᴏɴ:

{\bf{LCM~of~8,7,16,9~=~ 1008}}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{3}{8} \times  \frac{126}{126} =  \dfrac{378}{1008}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{4}{7} \times  \frac{144}{144} =  \dfrac{576}{1008}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{11}{16}  \times  \frac{63}{63} =  \dfrac{693}{1008}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{5}{9} \times  \frac{112}{112} =  \dfrac{560}{1008}

______________________________________

{\bf{Arranging~In~Descending~Order}}

\sf \frac{378}{1008} , \sf \frac{576}{1008} , \sf \frac{693}{1008} , \sf \frac{560}{1008}

\sf \dashrightarrow \sf \frac{693}{1008} > \sf \frac{576}{1008} > \sf \frac{560}{1008}  > \sf \frac{378}{1008}

{\bf{In~Lowest~Form}}

\sf \dashrightarrow \sf \dfrac{11}{16} > \sf \dfrac{4}{7} > \sf \dfrac{5}{9}  > \sf \dfrac{3}{8}

______________________________________

Answered by SwiftTeller
114

Question:

Arrange In Descending Order  \sf { \frac{3}{8}} , \frac{4}{7},  \frac{11}{16},  \frac{5}{9}

Solution:

Firstly , We Will See The Denominator Of Given Fractions and Take L.C.M. of the denominators

8,7,16,9 = L.C.M.

1008 = L.C.M.

Now,

We Will Equal The Denominators Of All Given Fractions.

So,

\longmapsto \sf{ \frac{3}{8} \times 126 }  =  \frac{378}{1008}  \\  \\  \sf{ \longmapsto \frac{4}{7}  \times 144 =  \frac{576}{1008} }\\  \\ \sf{  \longmapsto  \frac{11}{16} \times 63 =  \frac{693}{1008}  } \\  \\  \sf{ \longmapsto  \frac{5}{9} \times 112 =  \frac{560}{1008} }

Now,

We Can Arrange This Is Descending Order.

:\implies\sf{\frac{693}{1008}} <  \frac{576}{1008}  <  \frac{560}{1008}  <  \frac{378}{1008}   \\

Final Answer:

:\implies\sf{\frac{693}{1008}} <  \frac{576}{1008}  <  \frac{560}{1008}  <  \frac{378}{1008}  \\   \\  \bf{ \huge OR} \\  \\  \sf{  : \implies\frac{11}{16}  <  \frac{4}{7}  <  \frac{5}{9}  <  \frac{3}{8} }

Similar questions