Math, asked by rubyri77, 9 months ago

arrange
 \sqrt[4]{9}  \:  \sqrt[3]{5}  \:   \sqrt[6]{26}
in descending order​

Answers

Answered by dangerousqueen01
11

\huge\red{\mathbb {\underline {Answer}}}

 \sqrt[4]{9}  =  {(9)}^{ \frac{1}{4}}\\  \sqrt[3]{5}  =  {(5)}^{ \frac{1}{3} }  \\  \sqrt[6]{26}   =  {(26)}^{ \frac{1}{6} }

 \small\sf\blue{We \:  will \:  take \:  the \:  LCM \:  of \:  4, 3 \:  and \:  6 }

\small\sf\blue{LCM \:  of \:  4, 3 \:  and \:  6=12}

 {(9)}^{ \frac{1}{4}}  =  {9}^{( \frac{1 \times 3}{4 \times 3}  =  \frac{3}{12} )}  =  {(9)}^{ \frac{3}{12} }  \\  {(5)}^{\frac{1}{3}}  =  {5}^{( \frac{1 \times 4}{3 \times 4}  =  \frac{4}{12} )} =  {(5)}^{ \frac{4}{12} }   \\  {(26)}^{ \frac{1}{6} }  =  {26}^{( \frac{1 \times 2}{6 \times 2}  =  \frac{2}{12} )}  =  {(26)}^{ \frac{2}{12} }

 \small\sf\blue{Using \: the \: formula,}

 \small\sf\blue{ \sqrt[m]{a}  =  {a}^{ \frac{1}{m} }}

 \small\sf\blue{ we \: get ,}

{(9)}^{ \frac{3}{12} }  = {(9)}^{3 \times  \frac{1}{12} } =  \sqrt[12]{ {(9)}^{3} } =  \sqrt[12]{729}   \\{(5)}^{ \frac{4}{12} }  =   {(5)}^{4 \times  \frac{1}{12} }  =  \sqrt[12]{ {(5)}^{4} }  =  \sqrt[12]{625}  \\{(26)}^{ \frac{2}{12} } =  {(26)}^{2 \times  \frac{1}{12} }  =  \sqrt[12]{ {(26)}^{2} }  =  \sqrt[12]{676}

 \small\sf\blue{Comparing \: the \: numbers,we \: get,}

 \small\sf\orange{ \sqrt[12]{729} >  \sqrt[12]{676}  >  \sqrt[12]{625}  }

\small\sf\green{HENCE, \:  \sqrt[4]{9} >  \sqrt[6]{2}  >  \sqrt[3]{5}  }

Answered by Anonymous
0

 \huge{ \underline{ \bold{ᴀɴsᴡᴇʀ....{ \heartsuit}}}}

$$\begin{lgathered}\sqrt[4]{9} = {(9)}^{ \frac{1}{4}}\\ \sqrt[3]{5} = {(5)}^{ \frac{1}{3} } \\ \sqrt[6]{26} = {(26)}^{ \frac{1}{6} }\end{lgathered}$$

$$\small\sf\blue{We \: will \: take \: the \: LCM \: of \: 4, 3 \: and \: 6 }$$

$$\small\sf\blue{LCM \: of \: 4, 3 \: and \: 6=12}$$

$$\begin{lgathered}{(9)}^{ \frac{1}{4}} = {9}^{( \frac{1 \times 3}{4 \times 3} = \frac{3}{12} )} = {(9)}^{ \frac{3}{12} } \\ {(5)}^{\frac{1}{3}} = {5}^{( \frac{1 \times 4}{3 \times 4} = \frac{4}{12} )} = {(5)}^{ \frac{4}{12} } \\ {(26)}^{ \frac{1}{6} } = {26}^{( \frac{1 \times 2}{6 \times 2} = \frac{2}{12} )} = {(26)}^{ \frac{2}{12} }\end{lgathered}$$

$$\small\sf\blue{Using \: the \: formula,}$$

$$\small\sf\blue{ \sqrt[m]{a} = {a}^{ \frac{1}{m} }}$$

$$\small\sf\blue{ we \: get ,}$$

$$\begin{lgathered}{(9)}^{ \frac{3}{12} } = {(9)}^{3 \times \frac{1}{12} } = \sqrt[12]{ {(9)}^{3} } = \sqrt[12]{729} \\{(5)}^{ \frac{4}{12} } = {(5)}^{4 \times \frac{1}{12} } = \sqrt[12]{ {(5)}^{4} } = \sqrt[12]{625} \\{(26)}^{ \frac{2}{12} } = {(26)}^{2 \times \frac{1}{12} } = \sqrt[12]{ {(26)}^{2} } = \sqrt[12]{676}\end{lgathered}$$

$$\small\sf\blue{Comparing \: the \: numbers,we \: get,}$$

$$\small\sf\orange{ \sqrt[12]{729} > \sqrt[12]{676} > \sqrt[12]{625} }$$

$$\small\sf\green{HENCE, \: \sqrt[4]{9} > \sqrt[6]{2} > \sqrt[3]{5} }$$

Similar questions