Math, asked by Anonymous, 1 month ago

arrange the following fractions in ascending order with full explanation
4/15 ,3/15, 1/2, 9/10​

Answers

Answered by kraj0305431
0

Answer:

1 / 2

9 / 10

3 / 15

4 / 15

answer

asending order

Answered by Eutuxia
1

Given :

  • Fractions = 4/15, 3/15, 1/2, 9/10.​

To :

  • arrange them in ascending order

Solution :

⇒ Let's find the LCM of denominators.

\begin{array}{c|c} \underline{\sf {2}}&\underline{\sf {\; \; 15,15,2,10 \; \; \: }} \\ \underline{\sf {5}}&\underline{\sf {\; \; 15,15,1,5 \; \; \: }}\\ \underline{\sf {3}}&\underline{\sf {\; \; 3,3,1,1\; \; \: }} \\ & {\sf \; 1,1,1,1 \; \; }\end{array}

LCM of 15, 15, 2 and 10 = 2 × 5 × 3

= 10 × 3

= 30

⇒ Converting the denominators to LCM.

\sf \longrightarrow \dfrac{4}{15} = \dfrac{4 \times 2}{15 \times 2} = \dfrac{8}{30}

\sf \longrightarrow \dfrac{3}{15} = \dfrac{3 \times 2}{15 \times 2} = \dfrac{6}{30}

\sf \longrightarrow \dfrac{1}{2} =  \dfrac{1 \times 15}{2 \times 15 } =  \dfrac{15}{30}

\sf \longrightarrow \dfrac{9}{10} =  \dfrac{9 \times 3}{10 \times 3 } =  \dfrac{27}{30}

⇒ Let's arrange them in ascending order.

\sf \longrightarrow \dfrac{6}{30} \geq  \dfrac{8}{30} \geq \dfrac{15}{30}  \geq  \dfrac{27}{30}

\sf \longrightarrow \dfrac{3}{15} \geq  \dfrac{4}{15} \geq \dfrac{1}{2}  \geq  \dfrac{9}{10}

  • Therefore, the ascending order of these fractions is 3/15, 4/15, 1/2, 9/10.

Similar questions