Math, asked by Anonymous, 4 days ago

Arrange the following in ascending order :
2^{5555}, 3^{3333}, 6^{2222}

No spam

Answers

Answered by user0888
31

\Huge\text{$3^{3333}<2^{5555}<6^{2222}$}

\Huge\text{\underline{\underline{Idea}}}

The main idea to solve this equation is the laws of exponents. As we see here, there is a common factor in the exponent, 1111.

To compare these numbers, we can divide numbers by each other.

\huge\text{\underline{\underline{Explanation}}}

\cdots\longrightarrow\dfrac{2^{5555}}{3^{3333}}=\left(\dfrac{32}{27}\right)^{1111}>1

\cdots\longrightarrow\boxed{2^{5555}>3^{3333}}

\cdots\longrightarrow\dfrac{3^{3333}}{6^{2222}}=\left(\dfrac{27}{36}\right)^{1111}<1

\cdots\longrightarrow\boxed{3^{3333}<6^{2222}}

\cdots\longrightarrow\dfrac{6^{2222}}{2^{5555}}=\left(\dfrac{36}{32}\right)^{1111}>1

\cdots\longrightarrow\boxed{6^{2222}>2^{5555}}

\huge\text{\underline{\underline{Final answer}}}

Required answer.

\cdots\longrightarrow\boxed{3^{3333}<2^{5555}<6^{2222}}

Similar questions