Math, asked by narendra256np93, 3 months ago

Arrange the following rational number in the descending order.
 \frac{4}{9}  \frac{ - 4}{3}  \frac{ - 7}{ - 12}  \frac{ - 11}{24}

Answers

Answered by LilBabe
85

Question

Arrange the following rational number in the descending order.

 \frac{4}{9} \frac{ - 4}{3} \frac{ - 7}{ - 12} \frac{ - 11}{24}

Answer

 \large   \bf \frac{4}{9}  \:  \:  \: \frac{ (- 4)}{ \: 3} \:  \:    \: \frac{ (- 7)}{( - 12)}  \:  \:  \: \frac{( - 11)}{ \: 24}

The LCM of the given numbers is (-72).

Let's calculate each term,

 \tt \mapsto \frac{4}{9} =  \frac{4 \times ( - 8)}{ - 72} =  \frac{( - 32)}{ - 72} =  \frac{ \cancel - 32}{ \cancel - 72} = \bf \frac{32}{72}

\tt \mapsto \frac{( - 4)}{3} =  \frac{4 \times ( - 24)}{ - 72} =  \frac{( - 96)}{ - 72} =  \frac{ \cancel - 96}{ \cancel - 72} = \bf \frac{96}{72}

 \tt \mapsto \frac{( - 7)}{( - 12)} =  \frac{( - 7)\times 6}{ - 72} =  \frac{( - 42)}{ - 72} =  \frac{ \cancel - 42}{ \cancel - 72} =  \bf\frac{42}{72}

  \tt \mapsto \frac{( - 11)}{( - 24)} =  \frac{( - 11)\times 3}{ - 72} =  \frac{( - 33)}{ - 72} =  \frac{ \cancel - 33}{ \cancel - 72} =    \bf\frac{33}{72}

The numerator are 32,96,42 and 33

Here,we find that 32<33<42<96.

Therefore the descending order are:-

  \large  \rm\frac{4}{9}  &lt;  \:  \:  \:\frac{( - 11)}{ \: 24} &lt;   \:  \:  \: \frac{ (- 7)}{( - 12)}  &lt;  \:  \:  \: \frac{ (- 4)}{ \: 3}


sandhya1781: what is your name
shonaansari7876: hi
shonaansari7876: Afzal ansari
shonaansari7876: class 11 th
shonaansari7876: city jaipur
sandhya1781: OK great
Similar questions