Math, asked by shrithi64, 11 months ago

Arrange the the following in descending 7/15,11/21,1/7,17/35

Answers

Answered by minal44
4

Step-by-step explanation:

so easy first take LCM of denominator of all fraction then which is greater, smaller identify and then write in descending order

Answered by mysticd
8

Answer:

 \underline { Descending \:order }

 \frac{11}{21} < \frac{17}{35}<\frac{7}{15}<\frac{1}{7}

Step-by-step explanation:

 Given \: rational \: numbers \: are \: \frac{7}{15},\:\frac{11}{21},\:\frac{1}{7},\:\frac{17}{35}

 Find \: the \: LCM \: of \: denominators \: 15,\\21,7,35

 LCM (15,21,7,35} = 105

 \frac{7}{15} = \frac{ 7\times 7}{15\times 7} = \frac{49}{105}

 \frac{11}{21} = \frac{ 11\times 5}{21\times 5} = \frac{55}{105}

 \frac{1}{7} = \frac{ 1\times 15}{7\times 15} = \frac{15}{105}

 \frac{17}{35} = \frac{ 17\times 3}{35\times 3} = \frac{51}{105}

Therefore.,

 Arranging \:in \: descending \: order

 \frac{55}{105},\: \frac{51}{105}, \frac{49}{105},\\\frac{15}{105}

 \frac{11}{21} < \frac{17}{35}<\frac{7}{15}<\frac{1}{7}

•••♪

Similar questions