Hindi, asked by jeevajkr, 5 months ago

art indicated activity chicken curry in Hindi language​

Answers

Answered by prathamshailja
23

Explanation:

Given :

Lateral surface area of cube = 2400 sq.m

To Find :

The surface area of cube

Solution :

Lateral surface area of cube is givem by ,

\begin{gathered} \\ \star \: {\boxed{\red{\sf{LSA_{(cube)} = 4 {s}^{2} }}}} \\ \\ \end{gathered}

LSA

(cube)

=4s

2

Here ,

s is side of the cube

We have ,

LSA = 2400 sq.m

Substituting the value we have in the formula ,

\begin{gathered} \\ : \implies \sf \:2400 \: {m}^{2} = 4 {s}^{2} \\ \\ \end{gathered}

:⟹2400m

2

=4s

2

\begin{gathered} \\ : \implies \sf \: \frac{2400 \: {m}^{2} }{4} = {s}^{2} \\ \\ \end{gathered}

:⟹

4

2400m

2

=s

2

\begin{gathered} \\ : \implies \sf \: 600 \: {m}^{2} = {s}^{2} \\ \\ \end{gathered}

:⟹600m

2

=s

2

\begin{gathered} \\ : \implies \sf \: s = \sqrt{600 \: {m}^{2} } \\ \\ \end{gathered}

:⟹s=

600m

2

\begin{gathered} \\ : \implies{\underline{\boxed{\purple{\mathfrak{s = 10 \sqrt{6} \: m}}}}} \\ \\ \end{gathered}

:⟹

s=10

6

m

Now , Formula for surface area of cube is ,

\begin{gathered} \\ \star \: {\boxed{\red{\sf{TSA_{(cube)} = 6 {s}^{2} }}}} \\ \\ \end{gathered}

TSA

(cube)

=6s

2

Here ,

a is side

Now ,

\begin{gathered} \\ : \implies \sf \:TSA_{(cube)} = 6 {(10 \sqrt{6} \: m) }^{2} \\ \\ \end{gathered}

:⟹TSA

(cube)

=6(10

6

m)

2

\begin{gathered} \\ : \implies \sf \:TSA_{(cube)} = 6(600\: {m}^{2} ) \\ \\ \end{gathered}

:⟹TSA

(cube)

=6(600m

2

)

\begin{gathered} \\ : \implies {\underline{\boxed{\pink{\sf{TSA_{(cube)} =3600 \: {m}^{2} }}}}} \: \bigstar \\ \\ \end{gathered}

:⟹

TSA

(cube)

=3600m

2

Hence ,

The surface area of the cube whose lateral surface area is 2400 sq.m is 3600 sq.m

Similar questions