art indicated activity chicken curry in Hindi language
Answers
Explanation:
Given :
Lateral surface area of cube = 2400 sq.m
To Find :
The surface area of cube
Solution :
Lateral surface area of cube is givem by ,
\begin{gathered} \\ \star \: {\boxed{\red{\sf{LSA_{(cube)} = 4 {s}^{2} }}}} \\ \\ \end{gathered}
⋆
LSA
(cube)
=4s
2
Here ,
s is side of the cube
We have ,
LSA = 2400 sq.m
Substituting the value we have in the formula ,
\begin{gathered} \\ : \implies \sf \:2400 \: {m}^{2} = 4 {s}^{2} \\ \\ \end{gathered}
:⟹2400m
2
=4s
2
\begin{gathered} \\ : \implies \sf \: \frac{2400 \: {m}^{2} }{4} = {s}^{2} \\ \\ \end{gathered}
:⟹
4
2400m
2
=s
2
\begin{gathered} \\ : \implies \sf \: 600 \: {m}^{2} = {s}^{2} \\ \\ \end{gathered}
:⟹600m
2
=s
2
\begin{gathered} \\ : \implies \sf \: s = \sqrt{600 \: {m}^{2} } \\ \\ \end{gathered}
:⟹s=
600m
2
\begin{gathered} \\ : \implies{\underline{\boxed{\purple{\mathfrak{s = 10 \sqrt{6} \: m}}}}} \\ \\ \end{gathered}
:⟹
s=10
6
m
Now , Formula for surface area of cube is ,
\begin{gathered} \\ \star \: {\boxed{\red{\sf{TSA_{(cube)} = 6 {s}^{2} }}}} \\ \\ \end{gathered}
⋆
TSA
(cube)
=6s
2
Here ,
a is side
Now ,
\begin{gathered} \\ : \implies \sf \:TSA_{(cube)} = 6 {(10 \sqrt{6} \: m) }^{2} \\ \\ \end{gathered}
:⟹TSA
(cube)
=6(10
6
m)
2
\begin{gathered} \\ : \implies \sf \:TSA_{(cube)} = 6(600\: {m}^{2} ) \\ \\ \end{gathered}
:⟹TSA
(cube)
=6(600m
2
)
\begin{gathered} \\ : \implies {\underline{\boxed{\pink{\sf{TSA_{(cube)} =3600 \: {m}^{2} }}}}} \: \bigstar \\ \\ \end{gathered}
:⟹
TSA
(cube)
=3600m
2
★
Hence ,
The surface area of the cube whose lateral surface area is 2400 sq.m is 3600 sq.m