Economy, asked by kuttappayi3900, 1 year ago

Arun took a loan of 390625 from kuber finance. If the company charges interest at 16 % per annum compounded quarterly what amount will discharge his debt after one year

Answers

Answered by Mercidez
28
\huge\bold\green{Solution :\longrightarrow}

Given,

Principal (P) = Rs 390625

Rate (R) = 16% p.a.

Time (T) = 1 year

Since compounded quaterly

\mathsf{Amount = P \times (1 + \frac{R}{400} ) {}^{4T}} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \mathsf{= Rs} \: \: \mathfrak{390625 \times (1 + \frac{16}{400} ) {}^{4t}}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\mathsf{ = Rs} \: \: \mathfrak{390625 \times ( \frac{416}{400} ) {}^{4}} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \mathsf{= Rs} \: \: \mathfrak{390625 \times \frac{416}{400} \times \frac{416}{400} \times \frac{416}{400} \times \frac{416}{400}} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \mathsf{= Rs}\mathfrak{ \: \: 456972}

•°• He have to pay Rs 456972 after one year to discharge his debt.

<marquee>##RUWAT##<marquee>
Answered by plizzamae
4

Answer:

= $45697

Explanation:

formula: A= P(1+r/k) ^kt

P= principal

R= rate

T= time

K= compounded (annually,semi-annually, quarterly,monthly, daily)

solution:

A= P(1+r/k) ^kt

A=390625 (1+.16/4)^4(1)

A=390625 (1.04) ^4

A= 390625 (1.16985856)

A= 456976

therefore the answer is $ 456,976

       

Similar questions