Physics, asked by dalipanselms76, 1 year ago

As a 2.0 kg block travels around a 3.0 m radius circle it has an angular speed of 12
rad/s. The circle is parallel to the xy plane and is centered on the zaxis, 4.0 m from
the origin. Find
(a) the magnitude of its angular momentum around the origin,
. fthenarticle about zavicic​

Answers

Answered by Anonymous
9

\huge\underline\blue{\sf Answer:}

\red{\boxed{\sf Angular\:Momentum(L)=216\:kg.{m}^{2}/s}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given:}

  • Mass (m) = 2 kg

  • Radius (r) = 3 m

  • Speed (\sf{\omega})=12 rad/s

\large\underline\pink{\sf To\:Find:}

  • Magnitude of Angular momentum (L) = ?

________________________________

We know that ,

\large{♡}\large{\boxed{\sf I=m{r}^{2}}}

I = inerta

\large\implies{\sf 2 \times {3}^{2}}

\large\implies{\sf 2 \times 9}

\large\implies{\sf I=18}

\large{\boxed{\sf I=18 kg-{m}^{2}}}

Now ,

\large{♡}\large{\boxed{\sf Angular\:Momentum(L)=I \omega}}

On putting Value :

\large\implies{\sf 18 \times 12}

\large\implies{\sf 216}

\huge\red{♡}\red{\boxed{\sf Angular\:Momentum(L)=216\:kg.{m}^{2}/s}}

Similar questions