Physics, asked by shiwangikar2011, 14 days ago

As light from a star spreads out and weakens, do gaps form between the photons?​

Answers

Answered by meenusinghmeenu45
1

hope it useful means Mark as brain list please

Answered by s1274himendu3564
3

Answer:

Topic :-This is your punishment for spamming in my question.

If you do not know the answer, refrain from answering.

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec xf(x)=cotx⋅lnsecx

Solution :-

f(x)=\cot x \cdot \ln \sec xf(x)=cotx⋅lnsecx

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

dx

d(f(x))

=

dx

d(cotx⋅lnsecx)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

dx

d(f(x))

=lnsecx⋅

dx

d(cotx)

+cotx⋅

dx

d(lnsecx)

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)(∵

dx

d(fg)

=g⋅

dx

d(f)

+f⋅

dx

d(g)

)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

dx

d(f(x))

=lnsecx⋅(−csc

2

x)+cotx⋅

dx

d(lnsecx)

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)(∵

dx

d(cotx)

=−csc

2

x)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

dx

d(f(x))

=−csc

2

x⋅lnsecx+cotx⋅

secx

1

dx

d(secx)

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)(∵

dx

d(lnt)

=

t

1

dx

dt

)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

dx

d(f(x))

=−csc

2

x⋅lnsecx+cotx⋅

secx

1

⋅secx⋅tanx

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)(∵

dx

d(secx)

=secx⋅tanx)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

dx

d(f(x))

=−csc

2

x⋅lnsecx+(cotx⋅tanx)⋅(

secx

1

secx

)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

dx

d(f(x))

=−csc

2

x⋅lnsecx+1

(\because \cot x \cdot \tan x = 1)(∵cotx⋅tanx=1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

dx

d(f(x))

=1−csc

2

x⋅lnsecx

Note : csc x = cosec x

Similar questions