Math, asked by Thepinkrose, 1 month ago

As observed from the top of a 100 m high lighthouse (from sea level), the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the ships. [Use √3=1.73.]
 \\
→ Spam answers will be deleted.
Don't be greedy for points ⚠️ ⚠️

→ Quality answers needed.​​

Answers

Answered by ItzImran
19

More to know:

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf \red{ Trigonometry\: Table} \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}{ \red{\boxed{\boxed{ \blue {\begin{array}{ |c |c|c|c|c|c|} \sf\angle A & \sf{0}^{ \circ} & \sf{30}^{ \circ} & \sf{45}^{ \circ} & \sf{60}^{ \circ} & \sf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Solution:

Let the observer on the lighthouse CD be at D.

★ Height of the lighthouse CD = 100m

=> From the diagram,

∠XDA = 30° = ∠DAC &

∠XDB = 45° = ∠DBC

★ In the right angled ∆DCB,

tan45 \degree = \frac{DC}{BC}

\rightarrow \: 1 =  \frac{100}{BC}   \\  \\ \color{red}BC = 100m

In the right angled ∆DCA,

BD= AB × √3

= 100 × √3

= 173.2

Distance:

AB = AC - BC

= 73.2 m

Similar questions