Physics, asked by barbiegoldjjms, 11 months ago

as shown in the figure, blocks of masses M/2,M and M/2 are connected through a light string as shown, pulleys are light and smooth. friction is only between block C and floor. system is released from rest. find acceleration of blocks A,B and C.
Correct answer a(A)=a(C)=(3/4)gsin(theta), a(B)=gsin(theta)

Attachments:

Answers

Answered by Anonymous
29

Solution :

Given :-

✏ A system of three blocks of mass M/2, M and M/2 is provided.

✏ Co-efficient of friction b/w block C and surface = tan\theta/2

To Find :-

✏ Acceleration of all three blocks.

Assumption :-

✏ All the pulleys are light and frictionless.

Diagram :-

✏ Please see the attached image for better understanding.

Calculation :-

________________________________

  • For blocks A and C

\implies\sf\: \dfrac{M}{2}g\sin\theta+\dfrac{M}{2}g\sin\theta-\mu(\dfrac{M}{2})g\cos\theta=( \dfrac{M}{2}+\dfrac{M}{2})a\\ \\ \implies\sf\:M[\dfrac{g\sin\theta}{2}+\dfrac{g\sin\theta}{2}-\dfrac{g\tan\theta\cos\theta}{4}]=Ma\\ \\ \implies\sf\:g\sin\theta-\dfrac{g\sin\theta}{4}=a\\ \\ \implies\: \boxed{\sf{\pink{\large{a_1=a_3=a=\dfrac{3g\sin\theta}{4}}}}}

_________________________________

  • For block B

 \mapsto\sf\:Mg\sin\theta=Ma'\\ \\ \mapsto\: \boxed{\sf{\purple{\large{a'=a_2=g\sin\theta}}}}

_________________________________

Note :-

▪ In this question, motion of B block is independent from motion of block A and block C.

Nice question...

Attachments:
Answered by BrainlyConqueror0901
23

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration\:of\:block\:A=\frac{3g\:sin\:\theta}{4}}}}\\

\green{\tt{\therefore{Acceleration\:of\:block\:B=g\:sin\:\theta}}}\\

\green{\tt{\therefore{Acceleration\:of\:block\:C=\frac{3g\:sin\:\theta}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Mass \: of \: block \: A( m_{1}) =  \frac{M}{2}  \\  \\ \tt: \implies Mass \: of \: block \: B( m_{2}) = M \\  \\ \tt: \implies Mass \: of \: block \: C( m_{3}) =   \frac{M}{2} \\  \\   \tt:  \implies Coefficient \: of \: friction \: between \: block \: and \: wedge( \mu) =  \frac{tan  \: \theta}{2} \\  \\  \tt :  \implies angle \: inclined =  \theta \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Acceleration \: of \: block \: A= ? \\  \\ \tt:  \implies Acceleration \: of \: bock \: B= ? \\  \\ \tt:  \implies Acceleration \: of \: bock \: C= ?

• According to given question :

 \bold{For \: block \: A: } \\  \tt:  \implies Downward \: force =  \frac{M}{2} g \: sin \: \theta \\  \\  \tt:  \implies Acceleration =  \frac{Ma}{2}  \\  \\  \bold{For \: block \:B: } \\  \tt:  \implies Downward \: force =  Mg \: sin \: \theta \\  \\  \tt:  \implies Acceleration =  {Ma} \\  \\   \bold{For \: block \: C: } \\  \tt:  \implies Downward \: force =  \frac{M}{2} g \: sin \: \theta \\  \\  \tt:  \implies Acceleration =  \frac{Ma}{2}  \\  \\

 \bold{As \: we \: know \: that} \\  \tt:  \implies Friction \: force =  \mu m_{1}g  \: cos \: \theta\\  \\ \tt:  \implies Friction \: force =  \frac{tan \:  \theta}{2}   \times \frac{M}{2} \times g  \times cos \:  \theta \\  \\ \tt:  \implies Friction \: force = \frac{sin}{2 \: cos \: \theta}  \times  \frac{M}{2}  \times g\times  cos  \:  \theta \\  \\ \tt:  \implies Friction \: force =  \frac{Mg \: sin \: \theta}{4}  \\  \\   \bold{For \: block \: A: }  \\ \tt:  \implies  \frac{M}{2} g \: sin \:  \theta =  \frac{M}{2} a -  -  -  -  - (1) \\  \\  \bold{For \: block \: C : } \\  \tt:  \implies  m_{3} g \:sin \:  \theta - fr =  \frac{M}{2} a \\  \\ \tt:  \implies \frac{Mg \: sin \:  \theta}{2}  -  \frac{Mg \:  sin \:  \theta}{4}  =  \frac{M}{2} a -  -  -  -  - (2)

\text{Adding \: (1) \: and \: (2)} \\ \tt:  \implies  \frac{Mg \:sin \theta}{2}  +  \frac{Mg \: sin \theta}{2}  -  \frac{Mg \: sin \: \theta}{4}  =  \frac{Ma}{2}  +  \frac{Ma}{2}  \\  \\ \tt:  \implies  \frac{2Mg \: sin  \:  \theta +2Mg \: sin  \:  \theta - Mg \: sin \:  \theta}{4}  =  \frac{2Ma}{2}  \\  \\  \tt:  \implies  \frac{3Mg \:sin \:  \theta}{4} = Ma \\  \\  \tt:  \implies a =  \frac{3Mg \: sin \:  \theta}{4M}  \\  \\   \green{\tt:  \implies a = \frac{3g \: sin \:  \theta}{4} } \\  \\  \bold{For \: block \: B : }  \\  \tt:  \implies  m_{2}g \: sin \:  \theta  = Ma \\  \\  \tt:  \implies Mg \: sin  \:  \theta = Ma \\  \\  \tt:  \implies a = \frac{Mg \:  sin \:  \theta}{m}  \\  \\   \green{\tt:  \implies a = {g \:sin \:  \theta}} \\  \\   \green{\tt \therefore Acceleration \: of \: block \: A\: is \:  \frac{3g \: sin \: \theta}{4} } \\  \\ \green{\tt \therefore Acceleration \: of \: block \:B \: is \:  g \: sin \: \theta} \\  \\ \green{\tt \therefore Acceleration \: of \: block \: C \: is \:  \frac{3g \: sin \: \theta}{4} }

Similar questions