Math, asked by nicolecoopers98381, 1 month ago

asecθ + b tanθ + c = 0 and psecθ + q tanθ + r = 0 then prove that (br – qc)2 - (pc - ar)2 = ( aq - pb)2​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a \: sec \theta + b \: tan\theta + c = 0

and

\rm :\longmapsto\:p\: sec \theta + q \: tan\theta + r = 0

can be further rewritten as

\rm :\longmapsto\:a \: sec \theta + b \: tan\theta =  -  \: c

and

\rm :\longmapsto\:p \: sec \theta + q \: tan\theta =  -  \: r

Now, using Cross multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  b & \sf   - c & \sf a & \sf b\\ \\ \sf q & \sf  - r & \sf p & \sf q\\ \end{array}} \\ \end{gathered}

Now, we have

\rm :\longmapsto\:\dfrac{sec\theta}{ - br + qc}  = \dfrac{tan\theta}{ - pc + ar}  = \dfrac{ - 1}{aq - pb}

On multiply by - 1, each term, we get

\rm :\longmapsto\:\dfrac{sec\theta}{ br  - qc}  = \dfrac{tan\theta}{ pc  -  ar}  = \dfrac{1}{aq - pb}

Therefore,

\bf\implies \:\boxed{ \tt{ \: sec\theta =  \frac{br  - qc}{aq - pb}}}

and

\bf\implies \:\boxed{ \tt{ \: tan\theta =  \frac{pc  -  ar}{aq - pb}}}

Now, we know that,

 \red{\rm :\longmapsto\: {sec}^{2}\theta -  {tan}^{2}\theta = 1}

On Substituting the values, evaluated above we get

\rm :\longmapsto\: {\bigg[\dfrac{br  - qc}{aq - pb} \bigg]}^{2} -  {\bigg[\dfrac{pc  -  ar}{aq - pb} \bigg]}^{2} = 1

\bf\implies \: {(br  - qc)}^{2} -  {(pc  -  ar)}^{2} =  {(aq - pb)}^{2}

Hence, Proved

More to know :-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions