Math, asked by nishthab7678gmailcom, 1 month ago

Ashok borrowed * 12,000 at some rate per
cent compound interest. After a year, he paid
back 4,000. If compound interest for the
second year be 920, find :
(i) the rate of interest charged
(ii) the amount of debt at the end of the
second year.​

Answers

Answered by ItzAshi
414

Step-by-step explanation:

{\Large{\bf{\purple{Question :}}}} \\

Ashok borrowed Rs. 12,000 at some rate per

cent compound interest. After a year, he paid

back Rs. 4,000. If compound interest for the

second year be Rs. 920, find :

(i) the rate of interest charged

(ii) the amount of debt at the end of the

second year.

{\Large{\bf{\purple{Solution :}}}} \\

Given :

  • Sum (P) = Rs. 12000
  • Time (T) = 1 year

To find :

  • The rate of interest charged
  • The amount of debt at the end of the second year

Calculations :

1. Let's take x be the rate of interest charged

✯ \:  \:  \:  \:  \: {\large{\bf{\underline{\red{For  \: 1st  \: year \:  :}}}}} \\

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \:  \: Interest  \: (I) \:  =  \: \frac{12000  \: ×  \: x  \: ×  \: 1}{100}}}} \\  \\

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \:  \: Interest  \: (I) \:   =  \: 120x}}} \\  \\

✯ \:  \:  \:  \:  \: {\large{\bf{\underline{\red{For  \: 2nd  \: year :}}}}} \\

➠ After a year Ashok paid back Rs. 4000

Therefore,

P = Rs. 12000 + Rs. 120x - Rs. 4000

P = Rs. 8000 + 120x

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \:  \: Interest \:  (I) \:  =  \: \frac{(8000  \: +  \: 120x)  \: × \:  x  \: ×  \: 1}{100}}}} \\  \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: Interest  \: (I)  \: = \:  80x  \: +  \: 1.20x²}}} \\  \\

➠ The compound interest for the 2nd year is Rs. 920

✯ \:  \:  \:  \:  \:  \: {\large{\bf{\underline{\red{It  \: means \:  :}}}}} \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  \:  Rs. \:  80x \:  +  \: 1.20x²  \: = \:  Rs.  \: 920}}} \\  \\

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \:  \: 80x  \: +  \: 1.20x²  \: -  \: 920  \: =  \: 0}}} \\  \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: 3x²  \: + \:  200x \:  - \:  2300  \: =  \: 0}}} \\  \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  \:  3x²  \: +  \: 230x  \: -  \: 30x  \: - \:  2300  \: =  \: 0}}} \\  \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: x(3x  \: + \:  230) \:  - \:  10(3x  \: +  \: 230)  \: =  \: 0}}} \\  \\

{\bold{\sf{:  \: ⟹ \:  \:  \:  \:  \:  \:  (3x  \: + \:  230) (x \:  - \:  10) \:  =  \: 0}}} \\  \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: x \:  = \:  10}}} \\  \\

 \:  \:  \:  \:  \:  \:  \: {\large{\boxed{\mathrm{\pink{Rate  \: of \:  interest \: = 10\%}}}}}

2. The amount of debt at the end of 2nd year :

✯ \:  \:  \:  \:  \: {\large{\bf{\underline{\red{For  \: 1st  \: year \:  :}}}}} \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: Interest  \: (I)  \: = \:  Rs.  \: 120x  \: =  \: Rs. \:  1200}}} \\  \\

✯ \:  \:  \:  \:  \: {\large{\bf{\underline{\red{For  \: 2nd \: year \:  :}}}}} \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: Interest \:  (I) \:  = \:  Rs. (80x  \: +  \: 1.20x²)  \: = \:  Rs. 920}}}  \\  \\

The amount of debt at the end of 2nd year is equal to the addition of the sum of the 2nd year and interest for 2 years

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  \:  Debt  \: =  \: Rs.  \: 8000  \: + \:  Rs.  \: 1200  \: + \:  Rs.  \: 920}}} \\  \\

: \: ⟹ \:  \:  \:  \:  \:  \: {\large{\mathrm{\fbox{\pink{  Debt =  \: Rs. 10120}}}}} \\

Answered by XxItzAdyashaxX
74

Answer:

Principal (i) = 12000 Rs

After 1 year he paid back Rs 4000

Let the rate of interest be r Hence,

the principle after 1 year

= 12000(1+r/100)-4000

Now it is given that

C.I for 2nd year = 920

Hence,

{12000(1+r/100)-4000}(1+r/100)

= {12000(1+r/100)-4000 +920} => (1+r/100) = {12000(1+r/100)-4000 +920}/{12000(1+r/100)-4000}

=> (1+r/100) = {8920+120r}/{8000+120r}

=> r/100 = {8920+120r}/{8000+120r} - 1

=> r/100 = 920/8000+120r

=> 120r^2+8000r-92000 = 0 => 3r^2+200r-2300=0 => 3r^2 -30r+230r-2300=0

=> 3r(r-10) + 230(r-10)=0

=> (3r+230)(r-10)=0

Since rate cannot be negative Hence r = 10

Therefore rate of interest =10%

2. Now initial principle = 12000 C.I for 1st year

= 12000(1+10/100)-12000 = 13200-12000 = 1200

C.I. for 2nd year = 920

Hence sum of principle and interest of both years

=12000+1200+920

=14120

But he paid back 4000 Hence amount of debt at the end of 2nd year = 14120 - 4000 = 10120 Rs.

Similar questions
Math, 1 month ago