Chemistry, asked by adithyarajeshiy, 8 months ago

Assertion Reason:
Statement -1 : Molality of pure ethanol is lesser than pure water.
Statement -2 : As density of ethanol is lesser than density of water.
[Given : dethanol = 0.789 gm/ml; dwater = 1 gm/ml]
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is false, statement-2 is true.
(D) Statement-1 is true, statement-2 is false.

Answers

Answered by Anonymous
14

ANSWER:

  • (B) Statement - 1 is true, statement - 2 is true and statement - 2 is not the correct explanation for statement - 1.

 \\ \\

GIVEN:

  • Statement - 1 : Molality of pure ethanol is lesser than pure water.

  • Statement - 2 : As density of ethanol is lesser than density of water.

 \\ \\

TO VERIFY:

  • The given statements.

 \\ \\

EXPLANATION:

 \bigstar \ \boxed{ \large{\bold{ \orange{Molality =\dfrac{Moles\ of\ solute}{Mass\ of \ solvent}}}}} \\  \\  \\

 \sf\implies Let \ m_e\ be \ the \ molality \ of \ ethanol. \\  \\  \\

\sf \implies Let \ m_w\ be \ the \ molality \ of \ water. \\  \\  \\

\sf\implies Let \ the\ mass\ of \ solvent \ be \ the\ same. \\  \\  \\

 \bigstar \ \boxed{ \large{\bold{ \green{Moles=\dfrac{Mass}{Molecular \ mass}}}}} \\  \\  \\

 \sf  \dashrightarrow m_e =\dfrac{ \bigg( \dfrac{Mass \ of \ ethanol}{Molecular \ mass} \bigg) }{Mass\ of \ solvent} \\  \\  \\

 \bigstar \ \boxed{ \large{\bold{ \red{Mass = Density \times Volume}}}} \\  \\  \\

 \sf  \dashrightarrow m_e =\dfrac{ \bigg( \dfrac{0.789 \times v}{Molecular \ mass} \bigg) }{Mass\ of \ solvent} \\  \\  \\

 \sf  \dashrightarrow m_e =\dfrac{ \bigg( \dfrac{0.789 \times v}{46} \bigg) }{Mass\ of \ solvent} \\  \\  \\

\sf\implies Let \ the\ volume \ be \ the\ same. \\  \\  \\

\sf\dashrightarrow Similarly, \    m_w =\dfrac{ \bigg( \dfrac{1 \times v}{Molecular \ mass} \bigg) }{Mass\ of \ solvent} \\  \\  \\

\sf\dashrightarrow  m_w =\dfrac{ \bigg( \dfrac{1 \times v}{18} \bigg) }{Mass\ of \ solvent} \\  \\  \\

 \sf  \dashrightarrow  \dfrac{m_e}{m_w} = \dfrac{\dfrac{ \bigg( \dfrac{0.789 \times v}{46} \bigg) }{Mass\ of \ solvent} }{\dfrac{ \bigg( \dfrac{1 \times v}{18} \bigg) }{Mass\ of \ solvent}} \\  \\  \\

 \sf  \dashrightarrow  \dfrac{m_e}{m_w} = \dfrac{\dfrac{ 0.789 \times v}{46}  }{\dfrac{ v}{18} }\\  \\  \\

 \sf  \dashrightarrow  \dfrac{m_e}{m_w} = \dfrac{\dfrac{ 0.789 }{46}}{\dfrac{ 1}{18} }\\  \\  \\

 \sf  \dashrightarrow  \dfrac{m_e}{m_w} = \dfrac{0.789 \times 18 }{46} \\  \\  \\

 \sf  \dashrightarrow  \dfrac{m_e}{m_w} = \dfrac{14.202 }{46} \\  \\  \\

 \sf  \dashrightarrow  \dfrac{m_e}{m_w} = 0.309 \\  \\  \\

 \sf  \dashrightarrow m_e= 0.309 \ m_w\\  \\  \\

 \bigstar \ \sf \blue{Statement\ 1\ is\ correct\ m_e < m_w}\\ \\ \\

 \bigstar\ \sf \purple{Statement\ 2\ is\ correct\ (1 > 0.789)}\\ \\ \\

REASON:

  • Eventhough density is smaller for ethanol, molecular mass influences greatly the molality of ethanol and water.

  • Because difference between molecular masses of ethanol are much greater when compared to difference between densities.

  • Also generally, density is not used to calculate the molality.
Similar questions