Math, asked by deekshitaishita, 3 months ago

Assignment
I Express in the form a+i b
(2i) (-3i) (6÷7i)​

Answers

Answered by sahusasmita
0

Step-by-step explanation:

\frac{{(6 + i)(2 - i)}}{{\left( {4 + 3i} \right)\left( {1 - 2i} \right)}} = \frac{{12 + 2i - 6i - {i^2}}}{{4 + 3i - 8i - 6{i^2}}} = \frac{{12 + 1 - 4i}}{{4 + 6 - 5i}} = \frac{{13 - 4i}}{{10 - 5i}}=

(4+3i)(1−2i)

(6+i)(2−i)

=

4+3i−8i−6i

2

12+2i−6i−i

2

=

4+6−5i

12+1−4i

=

10−5i

13−4i

=

= \frac{{(13 - 4i)(10 + 5i)}}{{(10 - 5i)(10 + 5i)}} = \frac{{130 - 40i + 65i - 20{i^2}}}{{100 + 25}} = \frac{{130 + 20}}{{125}} + \frac{{25}}{{125}}i = \frac{6}{5} + \frac{1}{5}i=

(10−5i)(10+5i)

(13−4i)(10+5i)

=

100+25

130−40i+65i−20i

2

=

125

130+20

+

125

25

i=

5

6

+

5

1

i

Answer: \frac{6}{5} + \frac{1}{5}i

5

6

+

5

1

i

Similar questions