Assignment
I Express in the form a+i b
(2i) (-3i) (6÷7i)
Answers
Answered by
0
Step-by-step explanation:
\frac{{(6 + i)(2 - i)}}{{\left( {4 + 3i} \right)\left( {1 - 2i} \right)}} = \frac{{12 + 2i - 6i - {i^2}}}{{4 + 3i - 8i - 6{i^2}}} = \frac{{12 + 1 - 4i}}{{4 + 6 - 5i}} = \frac{{13 - 4i}}{{10 - 5i}}=
(4+3i)(1−2i)
(6+i)(2−i)
=
4+3i−8i−6i
2
12+2i−6i−i
2
=
4+6−5i
12+1−4i
=
10−5i
13−4i
=
= \frac{{(13 - 4i)(10 + 5i)}}{{(10 - 5i)(10 + 5i)}} = \frac{{130 - 40i + 65i - 20{i^2}}}{{100 + 25}} = \frac{{130 + 20}}{{125}} + \frac{{25}}{{125}}i = \frac{6}{5} + \frac{1}{5}i=
(10−5i)(10+5i)
(13−4i)(10+5i)
=
100+25
130−40i+65i−20i
2
=
125
130+20
+
125
25
i=
5
6
+
5
1
i
Answer: \frac{6}{5} + \frac{1}{5}i
5
6
+
5
1
i
Similar questions