Math, asked by pragatim410, 1 month ago

Assume cos (A-B) = cos A cos B + sin A sin B , find cos 15° when A = 45°, B = 30°

Gyus plz answer my question ​

Answers

Answered by allysia
73

Answer:

\dfrac{ \sqrt{3} + 1 }{2 \sqrt{2} }

Step-by-step explanation:

Just substitute the values for A and B in:

\\\tt  \cos \: A \cos \: B + \sin \: A\sin \: B \\   \\\tt   = \cos 45 \cos 30 + \sin45\sin 30 \\   \\\tt=  (\dfrac{1}{ \sqrt{2} }   \times \dfrac{ \sqrt{3} }{2} ) + ( \frac{1}{ \sqrt{2} }  \times  \frac{1}{2} ) \\  =  \dfrac{ \sqrt{3} }{2 \sqrt{2} }  +  \dfrac{1}{2 \sqrt{2} } \\  =  \dfrac{ \sqrt{3} + 1 }{2 \sqrt{2} }

If you want you can rationalise it furthur.


Anonymous: Ãwēsømê !
Answered by Anonymous
67

Given :-

cos (A-B) = cos A cos B + sin A sin B ,

A = 45°, B = 30°

To Find :-

Cos 15°

Solution :-

We know that

\sf cos \; 45^\circ = \dfrac{1}{\sqrt{2}}

\sf cos \; 30^\circ = \dfrac{\sqrt{3}}{2}

\sf sin \; 45^\circ = \dfrac{1}{\sqrt{2}}

\sf sin \; 30^\circ = \dfrac{\sqrt{3}}{2}

\sf \bigg(\dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2}\bigg) + \bigg(\dfrac{1}{\sqrt{2}}\times\dfrac{1}2\bigg)

\sf \dfrac{\sqrt{3}}{\sqrt{2}\times 2} + \dfrac{1}{2 \times \sqrt{2}}

\sf \dfrac{\sqrt{3}+1}{\sqrt{2}\times 2}

\sf \dfrac{\sqrt{3}+1}{ 2\sqrt{2}}

Similar questions