Math, asked by BrainlyFlash156, 3 months ago

Assume cos (A-B) = cos A cos B + sin A sin B , find cos 15° when A = 45°, B = 30°

Guys answer my question
No spam please​

Answers

Answered by Anonymous
19

if cos(a-b)=cosa cosb + sina sinb and we have to find cos15.

15 can be expressed as (45 - 30)

So,

=cos 15 = cos (45 - 30)

= cos45cos30 + sin45sin30

= (1/√2)(√3/2) + (1/√2)(1/2)

= √3/2√2 + 1/2√2

= (√3 + 1) / 2√2

[tex][/tex]

Answered by HolyGirl
49

 \huge\mathtt{\fcolorbox{cyan}{black}{\pink{Answer}}}

 \cos( \alpha  -  \beta )  =  \cos \:  \alpha  \cos \:  \beta  \:  +  \sin \:  \alpha  \:  \sin \: \beta

(where \:   \alpha  = 45 \: and \:  \beta  = 30) \\  =  \cos(45) \cos(30)  +  \sin(45) \sin(30)   \\  =  ( \frac{1 }{ \sqrt{2} } \times  \frac{ \sqrt{3} }{2} ) +  (\frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}) \\   = \frac{ \sqrt{3} }{2 \sqrt{2} }   +  \frac{ \sqrt{3} }{2 \sqrt{2} }  \\  =  \frac{2 \sqrt{3} }{2 \sqrt{2} }  \\  =  \frac{ \sqrt{3} }{ \sqrt{2} } \\ = \fbox{\sqrt{\frac{3}{2}}}

Similar questions