Math, asked by rintluangi74, 2 months ago

Assume it
unless stated otherwise.
1. Find the surface area and volume of a sphere whose radius is:
(i) 10.5 cm
(ii) 5 m
(iii) 5.6 cm​

Answers

Answered by GeniusYH
0

Hey Rintluangi !

Step-by-step explanation:

Given :

Sphere

(i) radius = 10.5 cm

(ii) radius = 5 cm

(iii) radius = 5.6 cm

To Find :

Find the Surface Area and Volume.

Formulae :

Surface Area of a Uniform Sphere = 4πr²

Volume of a Uniform Sphere = (4/3)πr³

  • Where r is the radius of the Sphere

Procedure :

(i) Given that r = 10.5 cm

⇒ SA = 4 × π × (10.5)² cm³

⇒ SA = 4π(110.25) cm³

⇒ SA = 441π cm³

If π = 22/7,

∴ Surface Area = 1386 cm².

If π = 3.14,

∴ Surface Area = 1384.74 cm².

Volume = (4/3) × π  × (10.5)³ cm³

⇒ V = (4/3)π × 1157.625 cm³

⇒ V = 1543.5π cm³

If π = 22/7,

∴ Volume = 4851 cm³.

If π = 3.14,

∴ Volume = 4846.59 cm³.

(i) Given that r = 5 m

⇒ SA = 4 × π × (5)² m³

⇒ SA = 4π(25) m³

⇒ SA = 100π m³

If π = 22/7,

∴ Surface Area = 314.2857 m².

If π = 3.14,

∴ Surface Area = 314 m².

Volume = (4/3) × π  × (5)³ m³

⇒ V = (4/3)π × 125 m³

⇒ V = 166.67π m³

If π = 22/7,

∴ Volume = 523.8095 m³.

If π = 3.14,

∴ Volume = 523.33 m³.

(i) Given that r = 5.6 cm

⇒ SA = 4 × π × (5.6)² cm³

⇒ SA = 4π(31.36) cm³

⇒ SA = 125.44π cm³

If π = 22/7,

∴ Surface Area = 394.24 cm².

If π = 3.14,

∴ Surface Area = 393.88 cm².

Volume = (4/3) × π  × (5.6)³ cm³

⇒ V = (4/3)π × 175.616 cm³

⇒ V = 234.1547π cm³

If π = 22/7,

∴ Volume = 735.9147 cm³.

If π = 3.14,

∴ Volume = 735.2456 cm³.

Thanks !

Similar questions