Assume it
unless stated otherwise.
1. Find the surface area and volume of a sphere whose radius is:
(i) 10.5 cm
(ii) 5 m
(iii) 5.6 cm
Answers
Hey Rintluangi !
Step-by-step explanation:
Given :
Sphere
(i) radius = 10.5 cm
(ii) radius = 5 cm
(iii) radius = 5.6 cm
To Find :
Find the Surface Area and Volume.
Formulae :
Surface Area of a Uniform Sphere = 4πr²
Volume of a Uniform Sphere = (4/3)πr³
- Where r is the radius of the Sphere
Procedure :
(i) Given that r = 10.5 cm
⇒ SA = 4 × π × (10.5)² cm³
⇒ SA = 4π(110.25) cm³
⇒ SA = 441π cm³
If π = 22/7,
∴ Surface Area = 1386 cm².
If π = 3.14,
∴ Surface Area = 1384.74 cm².
Volume = (4/3) × π × (10.5)³ cm³
⇒ V = (4/3)π × 1157.625 cm³
⇒ V = 1543.5π cm³
If π = 22/7,
∴ Volume = 4851 cm³.
If π = 3.14,
∴ Volume = 4846.59 cm³.
(i) Given that r = 5 m
⇒ SA = 4 × π × (5)² m³
⇒ SA = 4π(25) m³
⇒ SA = 100π m³
If π = 22/7,
∴ Surface Area = 314.2857 m².
If π = 3.14,
∴ Surface Area = 314 m².
Volume = (4/3) × π × (5)³ m³
⇒ V = (4/3)π × 125 m³
⇒ V = 166.67π m³
If π = 22/7,
∴ Volume = 523.8095 m³.
If π = 3.14,
∴ Volume = 523.33 m³.
(i) Given that r = 5.6 cm
⇒ SA = 4 × π × (5.6)² cm³
⇒ SA = 4π(31.36) cm³
⇒ SA = 125.44π cm³
If π = 22/7,
∴ Surface Area = 394.24 cm².
If π = 3.14,
∴ Surface Area = 393.88 cm².
Volume = (4/3) × π × (5.6)³ cm³
⇒ V = (4/3)π × 175.616 cm³
⇒ V = 234.1547π cm³
If π = 22/7,
∴ Volume = 735.9147 cm³.
If π = 3.14,
∴ Volume = 735.2456 cm³.
Thanks !