Math, asked by Anonymous, 8 days ago

Assume that a,b,c and d are positive integers such that a^5=b⁴,c³=d²,and c-a=19 find d-b​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that, a, b, c, d are positive integers such that

\rm :\longmapsto\: {a}^{5} =  {b}^{4}

and

\rm :\longmapsto\: {c}^{3} =  {d}^{2}

As

\rm :\longmapsto\: {a}^{5} =  {b}^{4}

\rm \implies\: {a}^{5} \: must \: be \: a \: perfect \: square

Also,

\rm :\longmapsto\: {c}^{3} =  {d}^{2}

\rm \implies\: {c}^{3} \: must \: be \: a \: perfect \: square

Again, it is given that

\rm :\longmapsto\:c \:  -  \: a = 19

Now, by hit and trial method, we have to choose values of c and a in such a way that they must be perfect squares and difference is 19.

So, By hit and trial

\bf :\longmapsto\:c  \: =  \: 100 \: and \: a \:  =  \: 81

Now,

\rm :\longmapsto\: {a}^{5} =  {b}^{4}

On substituting the value of a, we get

\rm :\longmapsto\: {81}^{5} =  {b}^{4}

\rm :\longmapsto\: {( {3}^{4} )}^{5} =  {b}^{4}

\rm :\longmapsto\:  {3}^{20}  =  {b}^{4}

\bf\implies \:b =  {3}^{5}  \:  \:  \:  \:  \: as \: b > 0

\bf\implies \:b =  243

Also,

\rm :\longmapsto\: {c}^{3} =  {d}^{2}

On substituting the value of c, we get

\rm :\longmapsto\: {100}^{3} =  {d}^{2}

\rm :\longmapsto\: {( {10}^{2} )}^{3} =  {d}^{2}

\rm :\longmapsto\:  {10}^{6}  =  {d}^{2}

\bf\implies \:d =  {10}^{3} \:  \:  \:  \:  \: as \: d > 0

\bf\implies \:d = 1000

Now, Consider

\rm :\longmapsto\:d - b

\rm \:  =  \: 1000 - 243

\rm \:  =  \: 757

Hence,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: d \:  -  \: b \:  =  \: 757 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \:  {x}^{m} \times  {x}^{n} =  {x}^{m + n} \: }}

\boxed{ \tt{ \:  {x}^{m}  \div   {x}^{n} =  {x}^{m  -  n} \: }}

\boxed{ \tt{ \:  {( {x}^{m} )}^{n} = {( {x}^{n} )}^{m} =  {x}^{mn} \: }}

\boxed{ \tt{ \:  {x}^{0} = 1 \: }}

\boxed{ \tt{ \:  {x}^{ - n} =  \frac{1}{ {x}^{n} } \: }}

Similar questions