Physics, asked by mkaboobackerckd, 8 months ago

assume that Earth has a surface charge density of 1 electron per metre^2 . calculate the earth's electric field​

Answers

Answered by nirman95
1

Given:

Earth has a surface charge density of one electron per metre².

To find:

Electrostatic field intensity at Earth surface.

Calculation:

Applying Gauss' Theorem:

 \therefore \displaystyle \:  \int E .ds \: =  \:  \frac{q}{ \epsilon_{0}}

 =  >  \displaystyle \:E   \int ds \: =  \:  \frac{q}{ \epsilon_{0}}

 =  >  \:E    \times 4\pi {r}^{2}  \: =  \:  \dfrac{q}{ \epsilon_{0}}

 =  >  \:E    \: =  \:  \dfrac{q}{ 4\pi {r}^{2} \epsilon_{0}}

 =  >  \:E    \: =  \:  \dfrac{1}{ \epsilon_{0}}  \times  \dfrac{q}{4\pi {r}^{2} }

 =  >  \:E    \: =  \:  \dfrac{1}{ \epsilon_{0}}  \times   \sigma

 =  >  \:E    \: =  \:  \dfrac{ \sigma}{ \epsilon_{0}}

 =  >  \:E    \: =  \:  \dfrac{1.6 \times  {10}^{ - 19} }{ \epsilon_{0}}

 =  >  \:E    \: =  \:  \dfrac{1.6 \times  {10}^{ - 19} }{8.85 \times  {10}^{ - 12} }

 =  >  \: E = 1.87 \times  {10}^{ - 7}  \: N {C}^{ - 1}

So, final answer is:

 \boxed{ \red{ \bold{  \: E = 1.87 \times  {10}^{ - 7}  \: N {C}^{ - 1} }}}

Similar questions