assume that electron in he ion is excited to the second orbital(n=2) calculate the following: the radius of the orbit,the velocity of the electron,the potential energy of the electron, the kinetic energy of the electron
Answers
Answered by
2
Bohr's
radius for the nth Orbit: (n = principal quantum number)
Let
R = Bohr' radius for an atom of atomic number Z,
n = orbit number = principal quantum number = 2
h = Planck's constant = 6.626 * 10⁻³⁴ units
K = 1/(4πε₀) = 9 * 10⁹ N-m²/C² = Coulomb's constant
Z = 2 for Helium
m = mass of an electron = 9.1 * 10⁻³¹ kg
e = charge on the electron = 1.602 * 10⁻¹⁹ C
1) centripetal force = electrostatic attraction between an electron and protons.
m v² / R = K (Z*e) * e / R²
=> v² = K Z e² / (m R) --- (1)
2) Angular momentum = m v R = n h / 2π (integral multiple of h/2π)
=> v = n h / (2 π m R) --- (2)
3) from (1) and (2):
n² h² / (4π² m² R²) = K Z e² / (m R)
=> R = n² h² / (4π² m K e² Z) --- (3)
4) So speed of electron (linear along the circular orbit) by substituting value of R,
=> v = (2 π K e² Z) / (n h)
5) Potential energy of the electron:
We ignore gravitational potential energy here.
PE = - K * Z * e * e / R = - K Z e² / R --- (4)
= - [4 π² m K² Z² e⁴ ] / (n² h²)
6) Kinetic energy of electron:
=> 1/2 * m * v² = (π m * R e² Z ) / (n h)
= [ 2 π² K² Z² e⁴ m ] / (n² h²) = - P.E / 2
=========================================
7) The total energy of the electron : (a simple formula)
KE + PE = P.E / 2
Total energy = - 13.6 Z² / n² eV = - 13.6 e V
So K.E. = 13.6 e V and P.E. = - 27.2 e V
Bohr's Radius of Hydrogen atom R for n = 1 is 0.529 °A
So for Helium in n =2, R = n² * 0.529 / Z °A = 1.058 °A
Speed of electron in Hydrogen (n = 1) is v = 2,185 km/s (≈ speed of light / 137)
so for Helium in n = 2, v = z * 2,185 / n km/s
So v = 2, 185 km/s
Let
R = Bohr' radius for an atom of atomic number Z,
n = orbit number = principal quantum number = 2
h = Planck's constant = 6.626 * 10⁻³⁴ units
K = 1/(4πε₀) = 9 * 10⁹ N-m²/C² = Coulomb's constant
Z = 2 for Helium
m = mass of an electron = 9.1 * 10⁻³¹ kg
e = charge on the electron = 1.602 * 10⁻¹⁹ C
1) centripetal force = electrostatic attraction between an electron and protons.
m v² / R = K (Z*e) * e / R²
=> v² = K Z e² / (m R) --- (1)
2) Angular momentum = m v R = n h / 2π (integral multiple of h/2π)
=> v = n h / (2 π m R) --- (2)
3) from (1) and (2):
n² h² / (4π² m² R²) = K Z e² / (m R)
=> R = n² h² / (4π² m K e² Z) --- (3)
4) So speed of electron (linear along the circular orbit) by substituting value of R,
=> v = (2 π K e² Z) / (n h)
5) Potential energy of the electron:
We ignore gravitational potential energy here.
PE = - K * Z * e * e / R = - K Z e² / R --- (4)
= - [4 π² m K² Z² e⁴ ] / (n² h²)
6) Kinetic energy of electron:
=> 1/2 * m * v² = (π m * R e² Z ) / (n h)
= [ 2 π² K² Z² e⁴ m ] / (n² h²) = - P.E / 2
=========================================
7) The total energy of the electron : (a simple formula)
KE + PE = P.E / 2
Total energy = - 13.6 Z² / n² eV = - 13.6 e V
So K.E. = 13.6 e V and P.E. = - 27.2 e V
Bohr's Radius of Hydrogen atom R for n = 1 is 0.529 °A
So for Helium in n =2, R = n² * 0.529 / Z °A = 1.058 °A
Speed of electron in Hydrogen (n = 1) is v = 2,185 km/s (≈ speed of light / 137)
so for Helium in n = 2, v = z * 2,185 / n km/s
So v = 2, 185 km/s
kvnmurty:
click on thanks button above;; select best answer
Similar questions