Assume that the disjoint sets data structure is implemented as an array {\tt smallest}[1 \dots 12]smallest[1…12]: {\tt smallest}[i]smallest[i] is equal to the smallest element in the set containing ii.
What is the output of the following program? As an answer, enter four integers separated by spaces.
Answers
Answer:
The efficiency of an algorithm sometimes depends on using an efficient data structure. A good choice of data structure can reduce the execution time of an algorithm and Union-Find is a data structure that falls in that category.
Let’s say, you have a set of N elements which are partitioned into further subsets, and you have to keep track of connectivity of each element in a particular subset or connectivity of subsets with each other. To do this operation efficiently, you can use Union-Find Data Structure.
Let’s say there are 5 people A, B, C, D E. A is a friend of B, B is a friend of C and D is a friend of E. As we can see:
1) A, B and C are connected to each other.
2) D and E are connected to each other.
So we can use Union Find Data Structure to check whether one friend is connected to another in a direct or indirect way or not. We can also determine the two different disconnected subsets. Here 2 different subsets are {A, B, C} and {D, E}.
You have to perform two operations here :
Union (A, B) - connect two elements A and B. Find (A, B) - find, is there any path connecting two elements A and B
Example: You have a set of elements S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Here you have 10 elements (N = 10 ).We can use an array Arr to manage the connectivity of elements. Arr[ ] indexed by elements of set, having size of N (as N elements in set) and can be used to manage the above operations.