assuming that x is a positive real number and a b c are rational numbers show that (x^b/x^c)^a(x^c/x^a)^b(x^a/x^b)^c=1
Answers
Answered by
35
Step-by-step explanation:
Given :-
x is a positive real number and a, b, c are rational numbers .
To find :-
Show that (x^b/x^c)^a(x^c/x^a)^b(x^a/x^b)^c=1
Solution:-
Given that :
x is a positive real number .
a, b, c are rational numbers .
LHS:-
(x^b/x^c)^a(x^c/x^a)^b(x^a/x^b)^c
=> [x^(b-c)]^a × [x^(c-a)]^b × [x^(a-b]^c
Since a^m/a^n = a^(m-n)
=> x^a(b-c) × x^b(c-a) × x^c(a-b)
Since (a^m)^n = a^(mn)
=> x^(ab-ac) × x^(bc-ab) × x^(ac-bc)
=> x^(ab-ac+bc-ab+ac-bc)
Since a^m × a^n = a^(m+n)
=> x^(ab-ab+bc-bc+ac-ac)
=>x^0
=>1
Since a^0 = 1
=> RHS
Therefore, LHS = RHS
Answer:-
(x^b/x^c)^a(x^c/x^a)^b(x^a/x^b)^c = 1
Used formulae:-
- a^m/a^ = a^(m-n)
- (a^m)^n = a^(mn)
- a^m × a^n = a^(m+n)
- a^0 = 1
Similar questions