Physics, asked by visheshagarwal153, 9 months ago

Assuming the density of air to be \sf 1.295kg \: {m}^{-3} , find the fall of barometric height in mm of Hg at a height of 107m above the sea level.

Take density of mercury as \sf 13.6 \times 10^3 kg \: {m}^{-3}

Answer should come

10mm of Hg

I want explaination.​

Answers

Answered by shadowsabers03
11

The pressure difference at a height \sf{h} from sea level is,

\longrightarrow\sf{\Delta P=\rho gh}

From this height is given by,

\longrightarrow\sf{h=\dfrac{\Delta P}{\rho g}}

Since \sf{\Delta P} and \sf{g} are constants,

\longrightarrow\sf{h\propto\dfrac{1}{\rho}}

Therefore,

\longrightarrow\sf{\dfrac{h_2}{h_1}=\dfrac{\rho_1}{\rho_2}}

Here,

  • \sf{\rho_1=1.295\ kg\,m^{-3}}

  • \sf{h_1=107\ m}

  • \sf{\rho_2=13.6\times10^3\ kg\,m^{-3}}

Then fall in barometric height is,

\longrightarrow\sf{h_2=h_1\times\dfrac{\rho_1}{\rho_2}}

\longrightarrow\sf{h_2=107\times\dfrac{1.295}{13.6\times10^3}}

\longrightarrow\sf{h_2=0.01\ m\ of\ Hg}

\longrightarrow\underline{\underline{\sf{h_2=10\ mm\ of\ Hg}}}

Hence 10 mm of Hg is the answer.

Similar questions