Chemistry, asked by Anonymous, 6 months ago

Assuming the first step of dissociation to be complete, find the concentration of all species in a 0.1 M of \rm H_2SO_4
If \rm K_2 = 1.2 \times 10^{-2}

Answers

Answered by Ekaro
31

Answer :

First step of dissociation :

\dag\:\boxed{\bf{H_2SO_4\:\longrightarrow\:H^+ + HSO_4^-}}

At t = 0 :

conc. of H₂SO₄ = 0.1 M

conc. of \sf{H^+} = 0

conc. of \sf{HSO_4^-} = 0

At t = t :

Since H₂SO₄ is a strong acid, it will completely dissociate into \sf{H^+} and \sf{HSO_4^-}.

conc. of H₂SO₄ = 0

conc. of \sf{HSO_4^-} = 0.1M

conc. of \sf{H^+} = 0.1M

Second step of dissociation :

\dag\:\boxed{\bf{HSO_4^-\:\longleftrightarrow\:H^+ + SO_4^{-2}}}

At t = 0 :

conc. of \sf{HSO_4^-} = 0.1M

conc. of \sf{H^+} = 0.1M

conc. of \sf{SO_4^{-2}} = 0

At equilibrium :

conc. of \sf{HSO_4^-} = 0.1 - x

conc. of \sf{H^+} = 0.1 + x

conc. of \sf{SO_4^{-2}} = x

Equilibrium constant of reaction :

\leadsto\sf\:k=\dfrac{[H^+][SO_4^{-2}]}{[HSO_4^+]}

\leadsto\sf\:1.2\times 10^{-2}=\dfrac{(0.1+x)x}{(0.1-x)}

\leadsto\sf\:0.012=\dfrac{0.1x+x^2}{(0.1-x)}

\leadsto\sf\:0.0012-0.012x=0.1x+x^2

\leadsto\sf\:x^2+0.112x-0.0012=0

On solving we get,

x = 0.00985 or x = -0.12185

We know that, x can't be negative.

∴ At equilibrium :

1) conc. of \sf{HSO_4^-} :

  • 0.1 - x
  • 0.1 - 0.00985
  • 0.09 M

2) conc. of \sf{H^+} :

  • 0.1 + x
  • 0.1 + 0.00985
  • 0.109 M

3) conc. of \sf{SO_4^{-2}} :

  • x
  • 0.00985 M
Similar questions