Chemistry, asked by ipsitsharma2193, 11 months ago

At 27 c and 1 atmosphere pressure N2O4 is 20% dissociated into NO2 find kp

Answers

Answered by Alleei
2

Answer : The value of K_p  for this reaction is, 0.2

Solution :  Given,

Initial pressure of N_2 = 1.42 bar

Initial pressure of H_2 = 2.87 bar

K_p = 0.036

The given equilibrium reaction is,

                            N_2O_4(g)\rightleftharpoons 2NO_2(g)

Initially                     1                 0

At equilibrium    (1-\alpha)           2\alpha

The expression of K_p will be,

K_p=\frac{(p_{NO_2})^2}{(p_{N_2O_4})}

K_p=\frac{(2\alpha)^2}{(1-\alpha)}

where,

\alpha = degree of dissociation = 20 % = 0.2

Now put all the given values in the above expression, we get:

K_p=\frac{(2\alpha)^2}{(1-\alpha)}

K_p=\frac{(2\times 0.2)^2}{(1-0.2)}

K_p=0.2

Therefore, the value of K_p  for this reaction is, 0.2

Answered by vardhanyashwanth
0

Explanation:

Answer : The value of K_pK

p

for this reaction is, 0.2

Solution : Given,

Initial pressure of N_2N

2

= 1.42 bar

Initial pressure of H_2H

2

= 2.87 bar

K_pK

p

= 0.036

The given equilibrium reaction is,

N_2O_4(g)\rightleftharpoons 2NO_2(g)N

2

O

4

(g)⇌2NO

2

(g)

Initially 1 0

At equilibrium (1-\alpha)(1−α) 2\alpha2α

The expression of K_pK

p

will be,

K_p=\frac{(p_{NO_2})^2}{(p_{N_2O_4})}K

p

=

(p

N

2

O

4

)

(p

NO

2

)

2

K_p=\frac{(2\alpha)^2}{(1-\alpha)}K

p

=

(1−α)

(2α)

2

where,

\alphaα = degree of dissociation = 20 % = 0.2

Now put all the given values in the above expression, we get:

K_p=\frac{(2\alpha)^2}{(1-\alpha)}K

p

=

(1−α)

(2α)

2

K_p=\frac{(2\times 0.2)^2}{(1-0.2)}K

p

=

(1−0.2)

(2×0.2)

2

K_p=0.2K

p

=0.2

Therefore, the value of K_pK

p

for this reaction is, 0.2

Similar questions