Chemistry, asked by ralmalki3399, 1 year ago

At a given temperature, you have a mixture of benzene (vapor pressure of pure benzene = 745 torr) and toluene (vapor pressure of pure toluene = 290 torr). The mole fraction of benzene in the vapor above the solution is 0.590. Assuming ideal behavior, calculate the mole fraction of toluene in the solution.

Answers

Answered by OlaMacgregor
40

Explanation:

The given data is as follows.

     Vapor pressure of pure benzene (y) = 745 torr

     Vapor pressure of pure toluene (z) = 290 torr

      Mole fraction of benzene = 0.590

      Mole fraction of toulene = ?

Let X_{a} and X_{b} be mole fractions of benzene and toulene in its solution.

And, let Y_{a} and Y_{b} be mole fractions of benzene and toulene in its vapour.

p_{a}_{o} and p_{b}_{o} are vapour pressures of pure benzene and pure toulene.

p_{a} and p_{b} are partial pressures of vapors of benzene and toulene.

and, P is total pressure.  

Then, Y_{a} = \frac{p_{a}}{P}  

                  = \frac{X_{a} p_{a}_{o}}{P} ............... (1)

            Y_{b} = \frac{p_{b}}{P}

                      = \frac{X_{b} p_{b}_{o}}{P} ............... (2)

Now, divide equation (1) by (2) as follows.

      \frac{Y_{a}}{Y_{b}} = \frac{X_{a} p_{a}_{o}}{X_{b} p_{b}_{o}}

It is given that, Y_{a} = 0.590, then Y_{b} = 1 - 0.590 = 0.410.

And, p_{a}_{o} = 745 torr , p_{b}_{o} = 290 torr

and, X_{a} + X_{b} = 1

Therefore, \frac{0.590}{0.41} = \frac{(1 - X_{b}) \times 745}{X_{b} \times 290}

               1.44 = \frac{745 - 745 X_{b}}{X_{b} \times 290}

                417.6 X_{b} = 745 - 745X_{b}

                         X_{b} = \frac{745}{1162.6}

                                    = 0.641

Hence, we can conclude that the mole fraction of toluene in the solution is 0.641.

Similar questions