Physics, asked by sangeeta2482, 10 months ago

At a given time the momentum of a body of mass 5 kg is 10 kgms-1. Now a force or 0.2 N acts on the
body in the direction of motion for 10 seconds. The increase in kinetic energy is
(1) 2.2 J
(2) 3.3 J
(3) 4.4 J
(4) 5.5 J​

Answers

Answered by ShivamKashyap08
16

{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}

At a given time the momentum of a body of mass 5 kg is 10 kgms-1. Now a force or 0.2 N acts on the body in the direction of motion for 10 seconds. The increase in kinetic energy is?

\huge{\bold{\underline{\underline{ Answer}}}}

\huge{\bold{\underline{Given:-}}}

  • Mass of the Body (m) = 5 kg.
  • Initial Momentum (p) = 10 kg m/s.
  • Force acting (F) = 0.2 N
  • Time period (t) = 10 seconds.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

From Momentum Formula,

\large{\boxed{\tt P = mu}}

Substituting the values,

\large{\tt \leadsto 10 \: Kg.m/s = 5 \: Kg \times u}

\large{\tt \leadsto 10 = 5 \times u}

\large{\tt \leadsto u = \dfrac{10}{5}}

\large{\tt \leadsto u = \cancel{\dfrac{10}{5}}}

\large{\leadsto {\underline{\underline{\tt u = 2 \: m/s}}}}

Therefore, Initial velocity is 2 m/s.

\rule{300}{1.5}

\rule{300}{1.5}

From Newton's second law of motion,

\large{\boxed{\tt F = ma}}

\large{\tt \leadsto 0.2 \: N = 5 \: Kg \times a}

\large{\tt \leadsto 0.2 = 5 \times a}

\large{\tt \leadsto a = \dfrac{0.12}{5}}

\large{\tt \leadsto a = \cancel{\dfrac{0.2}{5}}}

\large{\leadsto {\underline{\underline{\tt a = 0.04 \: m/s^2}}}}

Therefore, the Acceleration is 0.04 m/s².

\rule{300}{1.5}

\rule{300}{1.5}

Applying First kinematics equation,

\large{\boxed{\tt v = u + at}}

Substituting the values,

\large{\tt \leadsto v = 2 + 0.04 \times 10}

\large{\tt \leadsto v = 2 + 0.4}

\large{\leadsto {\underline{\underline{\tt v = 2.4 \: m/s}}}}

Therefore, the Final velocity is 2.4 m/s.

\rule{300}{1.5}

\rule{300}{1.5}

Applying Kinetic energy Formula,

\large{\boxed{\tt \Delta K.E = \dfrac{1}{2}.m (v^2 - u^2)}}

Substituting the values,

\large{\tt \leadsto \Delta K.E = \dfrac{1}{2} \times 5 \times [(2.4)^2 - (2)^2]}

\large{\tt \leadsto \Delta K.E = \dfrac{1}{2} \times 5 \times [5.76 - 4]}

\large{\tt \leadsto \Delta K.E = \dfrac{1}{2} \times 5 \times 1.76}

\large{\tt \leadsto \Delta K.E = \dfrac{1}{\cancel{2}} \times 5 \times \cancel{1.76}}

\large{\tt \leadsto \Delta K.E = 1 \times 5 \times 0.88}

\large{\tt \leadsto \Delta K.E =  5 \times 0.88}

\huge{\boxed{\boxed{\tt \Delta K.E = 4.4 \: J}}}

So, the Increase in Kinetic energy is 4.4 Joules (Option- 3).

\rule{300}{1.5}

Answered by 24sangeeta1974
0

Answer:

Explanation:

(3) 3.3 J

Similar questions