Physics, asked by sree4545, 5 months ago

At a point in a bracket the stresses on two mutually perpendicular planes are 120 N/mm2 and

60 N/mm2

both tensile. The shear stress across these planes is 30 N/mm2

. Find using the Mohr's

stress circle i) Principal stresses at the point, ii) Maximum shear stress and iii) resultant stress on

a plane inclined at 60° to the axis of the major principal stress.​

Answers

Answered by overparty4
0

Answer:

The following three points calculation can be defined as follows:

Explanation:

\begin{gathered}\sigma_x= 100 \frac {N}{mm^2}\\\\\sigma_y= 50 \frac {N}{mm^2}\\\\T_{xy}=80 \frac {N}{mm^2}\\\\\theta =20^{\circ}\end{gathered}

σ

x

=100

mm

2

N

σ

y

=50

mm

2

N

T

xy

=80

mm

2

N

θ=20

The resultant stress, principle stress, and maximum shear stress status are determined by the analytic method which can be defined as follows:

\to \sigma_\theta=\frac{\sigma_x+\sigma_y}{2}+\frac{\sigma_x-\sigma_y}{2} \cos 2 \theta + T_{xy} \sin 2\theta→σ

θ

=

2

σ

x

y

+

2

σ

x

−σ

y

cos2θ+T

xy

sin2θ

=\frac{\100+50}{2}+\frac{100-50}{2} \cos 40+80\sin 40=

2

\100+50

+

2

100−50

cos40+80sin40

=145.57 \ Mpa=145.57 Mpa

\to T_\theta=\frac{\sigma_x-\sigma_y}{2}\sin 2\theta-T_{xy}\cos 2 \theta→T

θ

=

2

σ

x

−σ

y

sin2θ−T

xy

cos2θ

\begin{gathered}=\frac{\100-50}{2}\sin 40-80\cos 40\\\\=-45.21 \ Mpa\end{gathered}

=

2

\100−50

sin40−80cos40

=−45.21 Mpa

\begin{gathered}\to \sigma_R=\sqrt{\sigma_B^2+T_\theta^2}\\\end{gathered}

→σ

R

=

σ

B

2

+T

θ

2

\begin{gathered}=\sqrt{145.57^2-45.21^2}\\\\=152.43 \ Mpa\end{gathered}

=

145.57

2

−45.21

2

=152.43 Mpa

\begin{gathered}\to \tan \theta= \frac{T_\theta}{\sigma_\theta}\\\\ \theta= \tan^{-1} \frac{T_\theta}{\sigma_\theta}\\\\\end{gathered}

→tanθ=

σ

θ

T

θ

θ=tan

−1

σ

θ

T

θ

\begin{gathered}= \tan^{-1} \frac{ -45.21}{145.57}\\\\=17.25^{\circ}\end{gathered}

=tan

−1

145.57

−45.21

=17.25

Calculating Maximum shear stress:

T_{max}=\sqrt{(\frac{\sigma_x-\sigma_y}{2})^2+T_{xy}}T

max

=

(

2

σ

x

−σ

y

)

2

+T

xy

\begin{gathered}=\sqrt{25^2 +80^2}\\\\=83. 81 \ Mpa\end{gathered}

=

25

2

+80

2

=83.81 Mpa

\theta_s=\frac{1}{2} \tan^{-1}\frac{\sigma_x-\sigma_y}{2T_{xy}}θ

s

=

2

1

tan

−1

2T

xy

σ

x

−σ

y

=8.677^{\circ}=8.677

\begin{gathered}\sigma_{avg}=75\\\\\sigma_{p1}=158.81 \ Mpa\\\\\sigma_{p2}= -8.81 \ Mpa\\\\\sigma_{\theta\ p1} =36.62^{\circ}\end{gathered}

σ

avg

=75

σ

p1

=158.81 Mpa

σ

p2

=−8.81 Mpa

σ

θ p1

=36.62

Scale 1 MPa = cm in the mohr circle

Its location with maximum shear stress container and main aircraft are interconnected

Similar questions