Math, asked by shinderamrao85, 6 months ago

At a point, the angle of elevation of a tower is such that its tangent is 5
/12
.On
walking 240m towards the tower, the tangent of the angle of elevation becomes
3
/4
. Find the height of the tower.​

Answers

Answered by lifekiller05
12

tan\theta =  \frac{5}{12}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ( eqn1)

and, \: tan\theta =  \frac{3}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:( eqn2)

BC AB

let \:BC  \:  = x \:  m\:  \:  \: and \: AB = y \: m

NOW, In \:  right \: angled  \: triangle   \\  ABC \ \\  tan \theta =  \frac{y}{x}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (eqn \: 3)

from \:  {2}^{nd \:} and \:  {3}^{rd}   \\ \implies   \frac{3}{4}   =  \frac{y}{x}

 \implies \: x =  y \times \frac{4}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (eqn \: 4)

Also \: in \:  right \:  angled \:  triangle  \\ ABD,  \: we \:  get \\  \implies tan \theta =  \frac{y}{x + 240}  \:  \:  \:  \:  \:  \:  \:( eqn \: 5)

From \:  1 \:  and  \: 5, we \:  get \\   \implies \: \frac{5}{12}  =  \frac{y}{x + 240}

 \implies 5(x + 240) = 12(y)

 \implies \: 5x + 1200 = 12y

 \implies12y = 4 \times  \frac{4}{3} y + 1200 \:   \\  (using \: 4)

 \implies12y - \frac{20}{3}y = 1200

  \implies \: \frac{36y - 20y}{3}  = 1200

 \implies16y = 3600

 \implies y =  \frac{3600}{16}

 \implies \: y = 225

Hense,   \: the  \: height  \: of \:  Tower  \: is \:   \\ 225  \: meter

plz mark me as brain list.

Similar questions