Math, asked by BrainlyGood, 1 year ago

At any point P on the parabola y^2 - 2y - 4x + 5 = 0, a tangent is drawn which meets the the directrix at Q. Then, the locus of R which divides QP externally in the ratio 1/2 : 1 is


1) (x+1) (y-1)^2 = 4
2) (x+1) (y-1)^2 + 4 = 0
3 ) (x-1) (y+1)^2 = 4
4) (x-1) ( y+1)^2 + 4 = 0

Answers

Answered by kvnmurty
3

ans = (b)


I will write the important steps.


Parabola: 

    (y-1)^2 = 4 a (x-1),   a = 1         --------- (1)
     Vertex=(1,1),      Focus: (1+a,1) = (2,1).
     Directrix : x= 1-a = 0        So it is the Y axis.

Slope of tangent : dy/dx = 2/(y-1) = 1/sqrt(x-1)
    Let P=(x1,y1) 
    Tangent: y-y1 = 2 (x-x1)/ (y1-1)    ------- (2)

Find Q by putting x =0 in (2)... 
   So   Q = [0, (y1^2 - 5) / 2(y1-1) ]

Let  R=(x,y)... 

Q is the midpoint of PR..as QR=PR/2

So we get       x = - x1, 

                       y = (y1-5) / (y1-1)  =  1 - 4/(y1-1)
Eliminate x1, y1 using (y1 - 1)^2 = 4 (x1-1)

Finally:   (y-1)^2 (x+1)+4 = 0

Similar questions