Math, asked by kamalhajare543, 1 month ago

@ brainly star only
or modicators and maths Aryabhatta
\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}
No Spam​

Answers

Answered by llAngelsnowflakesll
34

Given:-

\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

To Assume:-

  • Prove it

Solution:-

\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

Taking L.H.S

\blue{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

2 \cos \times cos \: y \:   = cos(x + y) + cos(x - y) \\ putting \: \:  \: x =  \frac{9\pi}{13}  \: and \:  \frac{\pi}{13}  \\ 2cos \:   \: \frac{9\pi}{13} cos \:  \frac{\pi}{13}  =  \cos( \frac{9\pi}{13}  +  \frac{\pi}{13})  + cos( \frac{9\pi}{13}  +  \frac{\pi}{13} ) = cos( \frac{10\pi}{13} ) + cos( \frac{8\pi}{13} ) \\  = (cos \frac{10\pi}{13}  + cos \frac{8\pi}{13} ) + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\

cos( \frac{10\pi}{13}  + cos \:  \frac{3\pi}{13}  + (cos \frac{8\pi}{13}  + cos \:  \frac{5\pi}{13}  )\\

Using \:  cos \:  x + cos \: y = 2 \: cos \:  \:  \frac{x + y}{2}  \:  \: cos \:  \:  \frac{x - y}{2}  \\   (2cos \:  \:   (\frac{ \frac{10\pi}{13}  +  \frac{3\pi}{13}  }{10} ) .cos \: ( \frac{  \frac{10\pi}{13}    -   \frac{3\pi}{13}}{2} )) + (2 \: cos \: ( \frac{ \frac{8\pi}{13}  +  \frac{5\pi}{13} }{2} ).cos ( \frac{ \frac{8\pi}{13} -   \frac{5\pi}{13} }{2} )) \\ (2 \: cos \: ( \frac{ \frac{13\pi}{13}   }{2 } ).cos \:  \: ( \frac{ \frac{7\pi}{13} }{2} )) + (2cos \:  \frac{ \frac{13\pi}{13} }{2} .cos \frac{ \frac{3\pi}{13} }{2} ) \\

(2cos \frac{\pi}{2} .cos \frac{7\pi}{26} ) + (2cos \frac{\pi}{2} .cos \frac{3\pi}{26} ) \\ 2cos \frac{\pi}{2} (cos \frac{7\pi}{26}  + cos \frac{3\pi}{26} ) \\ 2 \times 0(cos \frac{7\pi}{26}  + cos \frac{3\pi}{26} ) \:  \:  \:  \:  \: (cos \frac{\pi}{2}  = 0) \\  = 0 \\

R.H.S

\small\color{black}\boxed{\colorbox{white}{∴Hence,L.H.S =R.H.S}}

\small \color{hotpink}\boxed{\colorbox{white}{Hence Proved}}

Answered by mathdude500
8

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:2cos \dfrac{\pi}{13} \cos \dfrac{9\pi}{13}+ \cos \dfrac{3\pi}{13} + \cos \dfrac{5\pi}{13} = 0

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:2cos \dfrac{\pi}{13} \cos \dfrac{9\pi}{13}+ \cos \dfrac{3\pi}{13} + \cos \dfrac{5\pi}{13}

We know,

\red{ \boxed{ \sf{ \:2cosxcosy = cos(x + y) + cos(x - y)}}}

So, using this identity, we get

\rm \:  =  \: cos\bigg(\dfrac{9\pi}{13}  + \dfrac{\pi}{13}  \bigg) + cos\bigg(\dfrac{9\pi}{13} -  \dfrac{\pi}{13}  \bigg) + cos\dfrac{3\pi}{13}  + cos\dfrac{5\pi}{13}

\rm \:  =  \: cos\bigg(\dfrac{10\pi}{13}  \bigg) + cos\bigg(\dfrac{8\pi}{13} \bigg) + cos\dfrac{3\pi}{13}  + cos\dfrac{5\pi}{13}

can be rewritten as

\rm \:  =  \: cos\bigg(\pi - \dfrac{3\pi}{13}  \bigg) + cos\bigg(\pi - \dfrac{5\pi}{13} \bigg) + cos\dfrac{3\pi}{13}  + cos\dfrac{5\pi}{13}

We know,

\red{ \boxed{ \sf{ \:cos(\pi - x) =  -  \: cosx}}}

So, using this, we get

\rm \:  =   - \cancel{\: cos\bigg(\dfrac{3\pi}{13}  \bigg)}  -\cancel{ cos\bigg(\dfrac{5\pi}{13} \bigg)} +\cancel{ cos\dfrac{3\pi}{13}}  + \cancel{cos\dfrac{5\pi}{13}}

\rm \:  =  \: 0

Hence,

\red{ \boxed{ \sf{ \:2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}}}

Additional Information :-

\red{ \boxed{ \sf{ \:2sinxcosy = sin(x + y) + sin(x - y)}}}

\red{ \boxed{ \sf{ \:2sinxsiny = cos(x - y) - cos(x + y)}}}

\red{ \boxed{ \sf{ \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:cosx  - cosy = -  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:sinx + siny =  2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:sinx - siny =  2sin\bigg[\dfrac{x  -  y}{2} \bigg]cos\bigg[\dfrac{x  + y}{2} \bigg]}}}

Similar questions