Math, asked by rahulgowdarahulgowda, 10 months ago

@
Determine inhether a CC) is a factor of Plac)
In this Call Ploc) 2x² + x² - 2x - 1 g ex axtla​

Attachments:

Answers

Answered by Anonymous
24

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

\tt Given\begin{cases}  \sf{P(x) = 2x^3 + x^2 - 2x - 1} \\  \sf{g(x) = x + 1}  \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to determine whether g(x) is a factor of p(x).

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

As, it is given that x + 1 is g(x).

So, x = -1

\rule{150}{2}

Putting value of x as -1.

\sf{\mapsto 2(-1)^3 + (-1)^2 - 2(-1) - 1} \\ \\ \sf{\mapsto 2(-1) + 1 + 2 - 1} \\ \\ \sf{\mapsto -2 + 3 - 1} \\ \\ \sf{\mapsto 3 - 3} \\ \\ \sf{\mapsto 0}

\therefore It is a factor of polynomial.

\rule{200}{2}

\Large{\underline{\underline{\bf{Verification :}}}}

For verification put value of x as - 1 and put it equal to zero.

\sf{\mapsto 2(-1)^3 + (-1)^2 - 2(-1) - 1 = 0} \\ \\ \sf{\mapsto 2(-1) + 1 + 2 - 1 = 0} \\ \\ \sf{\mapsto -2 + 3 - 1 = 0} \\ \\ \sf{\mapsto 3 - 3 = 0} \\ \\ \sf{\mapsto 0 = 0}

Hence Verified

Similar questions